Decomposition and Construction of Neighbourhood Operations Using Linear Algebra

  • Atsushi Imiya
  • Yusuke Kameda
  • Naoya Ohnishi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

In this paper, we introduce a method to express a local linear operated in the neighbourhood of each point in the discrete space as a matrix transform. To derive matrix expressions, we develop a decomposition and construction method of the neighbourhood operations using algebraic properties of the noncommutative matrix ring. This expression of the transforms in image analysis clarifies analytical properties, such as the norm of the transforms. We show that the symmetry kernels for the neighbourhood operations have the symmetry matrix expressions.

Keywords

Construction Method Digital Image Processing Kronecker Product Digital Image Analysis Algebraic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Method for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)Google Scholar
  2. 2.
    Serra, J.: Mathematical Morphology. Academic Press, London (1982)MATHGoogle Scholar
  3. 3.
    Bracewell, R.N.: Two Dimensional Imaging. Prentice-Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  4. 4.
    Bellman, R.: Introduction to Matrix Analysis, 2nd edn. SIAM, Philadelphia (1987)Google Scholar
  5. 5.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge (1997)Google Scholar
  6. 6.
    Fuhrmann, P.A.: Polynomial Approach to Linear Algebra. Springer, Heidelberg (1996)MATHGoogle Scholar
  7. 7.
    Mignotte, M., Stefanescu, D.: Polynomials: An Algorithmic Approach. Springer, Heidelberg (1999)MATHGoogle Scholar
  8. 8.
    Clausen, M., Baum, J.: Fast Fourier Transform. Bibliographishes Institut & F.A, Brockhaus (1993)Google Scholar
  9. 9.
    Terras, A.: Fourier Analysis on Finite Groups and Applications, Cambridge (1999)Google Scholar
  10. 10.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)MATHGoogle Scholar
  11. 11.
    Grossmann, C., Roos, H.-G.: Numerik partieller Differentialgleichungen, Teubner (1994)Google Scholar
  12. 12.
    Grossmann, C., Terno, J.: Numerik der Optimierung, Teubner (1997)Google Scholar
  13. 13.
    Varga, R.S.: Matrix Iteration Analysis, 2nd edn. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Graham, A.: Kronecker Products and matrix Calculus with Applications. Ellis Horwood (1981)Google Scholar
  15. 15.
    Ruíz-Tolosa, J.R., Castillo, E.: From Vectors to Tensors. Springer, Heidelberg (2005)MATHGoogle Scholar
  16. 16.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Atsushi Imiya
    • 1
    • 2
  • Yusuke Kameda
    • 1
    • 2
  • Naoya Ohnishi
    • 1
    • 2
  1. 1.Institute of Media and Information TechnologyChiba UniversityJapan
  2. 2.School of Science and TechnologyChiba UniversityJapan

Personalised recommendations