A New Fuzzy Connectivity Class Application to Structural Recognition in Images

  • O. Nempont
  • J. Atif
  • E. Angelini
  • I. Bloch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

Fuzzy sets theory constitutes a poweful tool, that can lead to more robustness in problems such as image segmentation and recognition. This robustness results to some extent from the partial recovery of the continuity that is lost during digitization. Here we deal with fuzzy connectivity notions. We show that usual fuzzy connectivity definitions have some drawbacks, and we propose a new definition, based on the notion of hyperconnection, that exhibits better properties, in particular in terms of continuity. We illustrate the potential use of this definition in a recognition procedure based on connected filters. A max-tree representation is also used, in order to deal efficiently with the proposed connectivity.

References

  1. 1.
    Serra, J. (ed.): Image Analysis and Mathematical Morphology. Part II: Theoretical Advances. Academic Press, London (1988)Google Scholar
  2. 2.
    Serra, J.: Connectivity on Complete Lattices. Journal of Mathematical Imaging and Vision 9(3), 231–251 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive Connected Operators for Image and Sequence Processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  4. 4.
    Ronse, C.: Set-Theoretical Algebraic Approaches to Connectivity in Continuous or Digital Spaces. Journal of Mathematical Imaging and Vision 8(1), 41–58 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Braga-Neto, U., Goutsias, J.: A Theoretical Tour of Connectivity in Image Processing and Analysis. Journal of Mathematical Imaging and Vision 19(1), 5–31 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Braga-Neto, U., Goutsias, J.: Grayscale Level Connectivity: Theory and Applications. IEEE Transactions on Image Processing 13(12), 1567–1580 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rosenfeld, A.: Fuzzy Digital Topology. Information and Control 40, 76–87 (1979)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Udupa, J.K., Samarasekera, S.: Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. Graphical Models and Image Processing 58(3), 246–261 (1996)CrossRefGoogle Scholar
  10. 10.
    Carvalho, B., Gau, C., Herman, G., Kong, T.: Algorithms for Fuzzy Segmentation. Pattern Analysis and Applications 2(1), 73–81 (1999)CrossRefGoogle Scholar
  11. 11.
    Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences 8, 199–249 (1975)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York (1980)MATHGoogle Scholar
  13. 13.
    Najman, L., Couprie, M.: Building the Component Tree in Quasi-Linear Time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  14. 14.
    Colliot, O., Camara, O., Bloch, I.: Integration of Fuzzy Spatial Relations in Deformable Models - Application to Brain MRI Segmentation. Pattern Recognition 39, 1401–1414 (2006)CrossRefGoogle Scholar
  15. 15.
    Nempont, O., Atif, J., Angelini, E., Bloch, I.: Combining Radiometric and Spatial Structural Information in a New Metric for Minimal Surface Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 283–295. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23(2), 89–110 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • O. Nempont
    • 1
  • J. Atif
    • 2
  • E. Angelini
    • 1
  • I. Bloch
    • 1
  1. 1.Dept. TSI, CNRS UMR 5141 LTCIENST (Télécom ParisTech)ParisFrance
  2. 2.Unité ESPACE S140, IRD-Cayenne/UAG, Guyane Française 

Personalised recommendations