Euclidean Eccentricity Transform by Discrete Arc Paving

  • Adrian Ion
  • Walter G. Kropatsch
  • Eric Andres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

The eccentricity transform associates to each point of a shape the geodesic distance to the point farthest away from it. The transform is defined in any dimension, for simply and non simply connected sets. It is robust to Salt & Pepper noise and is quasi-invariant to articulated motion. Discrete analytical concentric circles with constant thickness and increasing radius pave the 2D plane. An ordering between pixels belonging to circles with different radius is created that enables the tracking of a wavefront moving away from the circle center. This is used to efficiently compute the single source shape bounded distance transform which in turn is used to compute the eccentricity transform. Experimental results for three algorithms are given: a novel one, an existing one, and a refined version of the existing one. They show a good speed/error compromise.

Keywords

eccentricity transform discrete analytical circles 

References

  1. 1.
    Rosenfeld, A.: A note on ’geometric transforms’ of digital sets. Pattern Recognition Letters 1(4), 223–225 (1983)CrossRefGoogle Scholar
  2. 2.
    Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the poisson equation. CVPR (2), 61–67 (2004)Google Scholar
  3. 3.
    Kropatsch, W.G., Ion, A., Haxhimusa, Y., Flanitzer, T.: The eccentricity transform (of a digital shape). In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 437–448. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28(3), 343–359 (1995)CrossRefGoogle Scholar
  5. 5.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.W.: Shock graphs and shape matching. International Journal of Computer Vision 30, 1–24 (1999)Google Scholar
  6. 6.
    Paragios, N., Chen, Y., Faurgeras, O.: Handbook of Mathematical Models in Computer Vision, vol. 06, pp. 97–111. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  9. 9.
    Diestel, R.: Graph Theory. Springer, New York (1997)MATHGoogle Scholar
  10. 10.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  11. 11.
    Ion, A., Peyré, G., Haxhimusa, Y., Peltier, S., Kropatsch, W.G., Cohen, L.: Shape matching using the geodesic eccentricity transform - a study. In: 31st OAGM/AAPR, Schloss Krumbach, Austria, May 2007, OCG (2007)Google Scholar
  12. 12.
    Maisonneuve, F., Schmitt, M.: An efficient algorithm to compute the hexagonal and dodecagonal propagation function. Acta Stereologica 8(2), 515–520 (1989)Google Scholar
  13. 13.
    Ion, A., Peltier, S., Haxhimusa, Y., Kropatsch, W.G.: Decomposition for efficient eccentricity transform of convex shapes. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 653–660. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Suri, S.: The all-geodesic-furthest neighbor problem for simple polygons. In: Symposium on Computational Geometry, pp. 64–75 (1987)Google Scholar
  15. 15.
    Mora, F., Ruillet, G., Andres, E., Vauzelle, R.: Pedagogic discrete visualization of electromagnetic waves. In: Eurographics poster session, EUROGRAPHICS, Granada, Spain (January 2003)Google Scholar
  16. 16.
    Andres, E.: Discrete circles, rings and spheres. Computers & Graphics 18(5), 695–706 (1994)CrossRefGoogle Scholar
  17. 17.
    Reveillès, J.-P.: Géométrie Discrète, calcul en nombres entiers et algorithmique (in french). University Louis Pasteur of Strasbourg (1991)Google Scholar
  18. 18.
    Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)CrossRefGoogle Scholar
  19. 19.
    Schmitt, M.: Propagation function: Towards constant time algorithms. In: Acta Stereologica: Proceedings of the 6th European Congress for Stereology, Prague, September 7-10, vol. 13(2) (December 1993)Google Scholar
  20. 20.
    Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR 2000, Hilton Head, SC, USA, June 13-15, pp. 1424–1429 (2000)Google Scholar
  21. 21.
    Flanitzer, T.: The eccentricity transform (computation). Technical Report PRIP-TR-107, PRIP, TU Wien (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adrian Ion
    • 1
  • Walter G. Kropatsch
    • 1
  • Eric Andres
    • 2
  1. 1.Pattern Recognition and Image Processing Group, Faculty of InformaticsVienna University of TechnologyAustria
  2. 2.University of Poitiers, SIC, FRE CNRSFrance

Personalised recommendations