Other Inhibitors of Viral Enzymes and Functions

  • H. ZimmermannEmail author
  • G. HewlettEmail author
  • H. Rübsamen-Waigmann
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 189)

Until the end of the 1970s, the mainstays of antiviral chemotherapy were nucleoside analogues that targeted virus polymerase, in particular, the herpesvirus DNA polymerase. The scourge of HIV triggered an unprecedented commitment to identify novel antivirals, and these efforts transformed antiviral therapy into the modern, sophisticated treatment form described in this book, with targets such as the reverse transcriptase and the protease as well as the entry of the human immunodeficiency virus. As the regulation of human pathogenic virus growth cycles became more understandable, the realisation grew that these pathogens had more than one Achilles heel that might be suitable targets for small molecules with antiviral activity. This chapter addresses those “other” targets as well as other approaches to the tried and tested polymerase inhibitors, the so-called non-nucleoside inhibitors of reverse transcriptase.


Herpes Simplex Virus Type Severe Acute Respiratory Syndrome Human Cytomegalovirus Severe Acute Respiratory Syndrome Integrase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Kobaisi MF, Rixon FJ, McDougall I, Preston VG (1991) The herpes simplex virus UL33 gene product is required for the assembly of full capsids. Virology 180:380–388PubMedCrossRefGoogle Scholar
  2. Anthony NJ (2004) HIV-1 integrase: a target for new AIDS chemotherapeutics. Curr Top Med Chem 4:979–990PubMedCrossRefGoogle Scholar
  3. Arvin AM, Alford CA (1990) Chronic intrauterine and perinatal infections. In: Galasso GJ, Whitley RJ, Merigan TC (eds) Antiviral agents and viral diseases of man, 3rd edn. Raven, NY, pp 497–580Google Scholar
  4. Asante-Appiah E, Skalka AM (1999) HIV-1 integrase: structural organization, conformational changes, and catalysis. Adv Virus Res 52:351–369PubMedCrossRefGoogle Scholar
  5. Azad RF, Driver VB, Tanaka K, Crooke RM, Anderson KP (1993) Antiviral activity of a phos-phorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37:1945–1954PubMedGoogle Scholar
  6. Bacheler LS, Jeffrey GH, D'Aquila R, Wallace L, Logue K, Cordova B, Hertogs K, Larder B, Buckery R, Baker D et al. (2001) Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol 75:4999–5008PubMedCrossRefGoogle Scholar
  7. Baines JD, Cunningham C, Nalwanga D, Davison A (1997) The UL15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the UL15 gene product. J Virol 71:2666–2673PubMedGoogle Scholar
  8. Balzarini J (2004) Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr Top Med Chem 4:921–944PubMedCrossRefGoogle Scholar
  9. Baumeister J, Fischer R, Eckenberg P, Henninger K, Ruebsamen-Waigmann H, Kleymann G (2007) Superior efficacy of helicase-primase inhibitor BAY 57–1293 for herpes infection and latency in the guinea pig model of human genital herpes disease. Antivir Chem Chemother 18:35–48PubMedGoogle Scholar
  10. Beard PM, Duffy C, Baines JD (2004) Quantification of the DNA cleavage and packaging proteins UL15 and UL28 in A and B capsids of herpes simplex virus type 1. J Virol 78:1367–1374PubMedCrossRefGoogle Scholar
  11. Betz UA, Fischer R, Kleymann G, Hendrix M, Rubsamen-Waigmann H (2002) Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57–1293. Antimi-crob Agents Chemother 46:1766–1772CrossRefGoogle Scholar
  12. Bhattacharyya SP, Rao VB (1993) A novel terminase activity associated with the DNA packaging protein gp17 of bacteriophage T4. Virology 196:34–44PubMedCrossRefGoogle Scholar
  13. Bhattacharyya SP, Rao VB (1994) Structural analysis of DNA cleaved in vivo by bacteriophage T4 terminase. Gene 146:67–72PubMedCrossRefGoogle Scholar
  14. Billich A (2003) S-1360 Shionogi-GlaxoSmithKline. Curr Opin Investig Drugs 4:206–209PubMedGoogle Scholar
  15. Black LW (1988) DNA packaging in dsDNA bacteriophages. In: Calendar R (ed) The bacterio-phages. Plenum, NY, pp 321–373Google Scholar
  16. Bogner E (2002) Human cytomegalovirus terminase as a target for antiviral chemotherapy. Rev Med Virol 12:115–127PubMedCrossRefGoogle Scholar
  17. Bogner E, Reschke M, Reis B, Mockenhaupt T, Radsak K (1993) Identification of the gene product encoded by ORF UL56 of the human cytomegalovirus genome. Virology 196:290–293PubMedCrossRefGoogle Scholar
  18. Bogner E, Radsak K, Stinski MF (1998) The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol 72:2259–2264PubMedGoogle Scholar
  19. Borowski P, Deinert J, Schalinski S et al. (2003) Halogenated benzimidazoles and benzotriazoles as inhibitors of the NTPase/helicase activities of hepatitis C and related viruses. Eur J Biochem 270:1645–1653PubMedCrossRefGoogle Scholar
  20. Bürger I, Reefschläger J, Bender W, Eckenberg P, Popp A, Weber O, Graeper S, Klenk HD, Rübsamen-Waigmann H, Hallenberger S (2001) A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J Virol 75:9077–9086CrossRefGoogle Scholar
  21. Casado JL, Perez-Elias MJ, Marti-Belda P, Antela A, Suarez M, Ciancas E et al. (1998) Improved outcome of cytomegalovirus retinitis in AIDS patients after introduction of protease inhibitors. J Acquir Immune Defic Syndr Hum Retrovirol 19:130–134PubMedGoogle Scholar
  22. Catalano CE (2000) The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mol Life Sci 57:128–148PubMedCrossRefGoogle Scholar
  23. Chee MS, Bankeir AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnel T, Hutchinson CAI, Kouzarides T, Martignetti JA, Preddie E, Satchwell SP, Tomlinson P, Weston KM, Barrel BG (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–170PubMedGoogle Scholar
  24. Chiu TK, Davies DR (2004) Structure and function of HIV-1 integrase. Curr Top Med Chem 4:965–977PubMedCrossRefGoogle Scholar
  25. Chulay J, Biron K, Want L, Underwood M, Chamberlain S, Frick L, Good S, Davis M, Harvey R, Townsend L, Drach J, Koszalka G (1999) Development of novel benzimidazole riboside compounds for treatment of cytomegalovirus disease. In: Mills J, Volberding P, Corey L (eds) Antiviral therapy 5: new directions for clinical applications and research. Kluwer/Plenum, NY, pp 129–134Google Scholar
  26. Cobb JA, Bjergbaek L (2006) RecQ helicases: lessons from model organisms. Nucleic Acids Res 34:4106–4114PubMedCrossRefGoogle Scholar
  27. Crute JJ, Grygon CA, Hargrave KD, Simoneau B, Faucher AM, Bolger G, Kibler P, Liuzzi M, Cordingley MG (2002) Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med 8:386–391PubMedCrossRefGoogle Scholar
  28. De Clercq E (1993) HIV-1-specific RT inhibitors: highly selective inhibitors of human immunodeficiency virus type 1 that are specifically targeted at the viral reverse transcriptase. Med Res Rev 13:229–258PubMedCrossRefGoogle Scholar
  29. de Jong MD, Galasso GJ, Gazzard B, Griffiths PD, Jabs DA, Kern ER et al. (1998) Summary of the II international symposium on cytomegalovirus. Antiviral Res 39:141–162PubMedCrossRefGoogle Scholar
  30. Debyser Z, Cherepanov P, Van Maele B, De Clercq E, Witvrouw M (2002) In search of authentic inhibitors of HIV-1 integration. Antivir Chem Chemother 13:1–15PubMedGoogle Scholar
  31. Deeks SG (2001) International perspectives on antiretroviral resistance. Non-nucleoside reverse transcriptase inhibitor resistance. J Acquir Immune Defic Syndr 26:25–33CrossRefGoogle Scholar
  32. Deres K, Schroder CH, Paessens A, Goldmann S, Hacker HJ, Weber O, Kramer T, Niewohner U, Pleiss U, Stoltefuss J et al. (2003) Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 299:893–896PubMedCrossRefGoogle Scholar
  33. Drew W, Paya C, Emery V (2001) Cytomegalovirus (CMV) resistance to antivirals. Am J Transplant 1:307–312PubMedGoogle Scholar
  34. Embrey MW, Wai JS, Funk TW, Homnick CF, Perlow DS, Young SD, Vacca JP, Hazuda DJ, Felock PJ, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryelski LJ, Jin L, Chen I, Ellis JD, Wong BK, Lin JH, Leonard YM, Tsou NN, Zhuang L (2005) A series of 5-(5,6)-dihydrouracil substituted 8-hydroxy-[1,6]naphthyridine-7-carboxylic acid 4-fluorobenzylamide inhibitors of HIV-1 integrase and viral replication in cells. Bioorg Med Chem Lett 15:4550–4554PubMedCrossRefGoogle Scholar
  35. Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, Egbertson M, Melamed JY, Young S, Hamill T et al (2000) HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci USA 97:11244–11249PubMedCrossRefGoogle Scholar
  36. Esposito D, Craigie R (1999) HIV integrase structure and function. Adv Virus Res 52:319–333PubMedCrossRefGoogle Scholar
  37. Evering TH, Markowitz M (2007) Raltegravir (MK-0518): an integrase inhibitor for the treatment of HIV-1. Drugs Today (Barc) 43:865–877Google Scholar
  38. Falagas ME, Paya C, Ruthazer R, Badley A, Patel R, Wiesner R et al. (1998) Significance of cy-tomegalovirus for long-term survival after orthotopic liver transplantation: a prospective derivation and validation cohort analysis. Transplantation 66:1020–1028PubMedCrossRefGoogle Scholar
  39. Field AK (1999) Human cytomegalovirus: challenges, opportunities and new drug development. Antivir Chem Chemother 10:219–232PubMedGoogle Scholar
  40. Frick DN (2003) Helicases as antiviral drug targets. Drug News Perspect 16:355–362PubMedCrossRefGoogle Scholar
  41. Frick DN (2006) Step-by-step progress toward understanding the hepatitis C virus RNA helicase. Hepatology 43:1392–1395PubMedCrossRefGoogle Scholar
  42. Frick DN (2007) The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Curr Issues Mol Biol 9:1–20PubMedGoogle Scholar
  43. Gazzard BG, Pozniak AL, Rosenbaum W, Yeni GP, Staszewski S, Arasteh K, De Dier K, Peeters M, Woodfall B, Stebbing J, vant' Klooster GA (2003) An open-label assessment of TMC 125 a new, next-generation NNRTI, for 7 days in HIV-1 infected individuals with NNRTI resistance. AIDS 17:49–54CrossRefGoogle Scholar
  44. Gibson W (1996) Structure and assembly of the virion. Intervirology 39:389–400PubMedGoogle Scholar
  45. Goldman ME, Nunberg JH, O'Brien JA, Quintero JC, Schleif WA, Freund KF, Gaul SL, Saari WS, Wai JS, Hoffman JM et al. (1991) Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity. Proc Natl Acad Sci USA 88:6863–6867PubMedCrossRefGoogle Scholar
  46. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure- function relationships. Curr Opin Struct Biol 3:419–429CrossRefGoogle Scholar
  47. Grinsztejn B, Nguyen BY, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, Gonzalez CJ, Chen J, Harvey CM, Isaacs RD; Protocol 005 Team (2007) Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 369:1261–1269PubMedCrossRefGoogle Scholar
  48. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J et al. (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci USA 99:6661–6666PubMedCrossRefGoogle Scholar
  49. Gruzdev B, Rakhmanova A, Doubovskaya E, Yakovlev A, Peeters M, Rinehart A, de Dier K, Baede-van Dijk B, Parys W, van't Klooster G (2003) A randomized, double-blind, placebo-controlled trial of TMC125 as 7-day monotherapy in antiretroviral näive, HIV-1 infected subjects. AIDS 17:2487–2494PubMedCrossRefGoogle Scholar
  50. Hammond JN, Leavitt MC, Rudy JJ, Isaacson JS, Hertogs K, Larder BA, Pattick AK (2003) Long-term virological response to capravirine in HIV-infected NNRTI-experienced patients. In: 43rd interscience conference on antimicrobial agents and chemotherapy. Chicago, IL, Abstract H-871Google Scholar
  51. Harada K, Eizuru Y, Isashiki Y, Ihara S, Minamishima Y (1997) Genetic analysis of a clinical isolate of human cytomegalovirus exhibiting resistance against both ganciclovir and cidofovir. Arch Virol 142:215–225PubMedCrossRefGoogle Scholar
  52. Hazuda D, Schleif W, Gabryelski L, Grobler J, Felock P, Stillmock K, Espeseth A, Danzeisen R, Danovich R, Miller M, Witmer M (2001) Resistance to integration inhibitors: evolution of active site mutations, relationship to fitness and enzyme co-factor utilization. Antivir Ther 6:4Google Scholar
  53. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD (2000) Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650PubMedCrossRefGoogle Scholar
  54. Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP Jr, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen I-W, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD (2004) A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci USA 101:11233–11238PubMedCrossRefGoogle Scholar
  55. Hepatitis C Support project, Hepatitis C Basics (2006) New HCV antivirals and drug resistance.
  56. Herandez J, Amador L, Amantea M, Chao H, Hawley P, Paradiso L (2000) Short-course monother-apy with AG1549, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), in an-tiretroviral näive patients. In: 7th conference on retroviruses and opportunistic infections. San Francisco, CA, Abstract 669Google Scholar
  57. Hwang J-S, Bogner E (2002) ATPase activity of the terminase subunit pUL56 of human cy-tomegalovirus. J Biol Chem 27:6943–6948CrossRefGoogle Scholar
  58. Jabs DA (1995) Ocular manifestations of HIV infection. Trans Am Ophthalmol Soc 93:623–683PubMedGoogle Scholar
  59. Jabs DA, Enger C, Dunn JP, Forman M (1998a) Cytomegalovirus retinitis and viral resistance: ganciclovir resistance. J Infect Dis 177:770–773CrossRefGoogle Scholar
  60. Jabs DA, Enger C, Forman M, Dunn JP (1998b) Incidence of foscarnet resistance and cido-fovir resistance in patients treated for cytomegalovirus retinitis. Antimicrob Agents Chemother 42:2240–2244Google Scholar
  61. Kehlenbeck S, Betz U, Birkmann A, Fast B, Göller AH, Henninger K, Lowinger T, Marrero D, Paessens A, Paulsen D, Pevzner V, Schohe-Loop R, Tsujishita H, Welker R, Kreuter J, Rübsamen-Waigmann H, Dittmer F (2006) Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore. J Virol 80:6883–6894PubMedCrossRefGoogle Scholar
  62. Kesel AJ (2005) Synthesis of novel test compounds for antiviral chemotherapy of severe acute respiratory syndrome (SARS). Curr Med Chem 12:2095–2162PubMedCrossRefGoogle Scholar
  63. Kleymann G, Fischer R, Betz UAK, Hendrix M, Bender W, Schneider U, Handke G, Eckenberg P, Hewlett G, Pevzner V et al (2002) New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med 8:392–398PubMedCrossRefGoogle Scholar
  64. Kohlstaedt LA, Wang J, Fiedman JM, Rice PA, Steitz TA (1992) A crystal structure at 3.5 Åresolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790PubMedCrossRefGoogle Scholar
  65. Krosky P, Underwood M, Turk S, Feng K, Jain R, Ptak R, Westerman A, Biron K, Townsend L, Drach J (1998) Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J Virol 72:4721–4758PubMedGoogle Scholar
  66. Lamberti C, Weller SK (1996) The herpes simplex type 1 UL6 protein is essential for cleavage and packaging but not for genomic inversion. Virology 226:403–407PubMedCrossRefGoogle Scholar
  67. Lamberti C, Weller SK (1998) The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J Virol 72:2463–2473PubMedGoogle Scholar
  68. Lee LM, Karon JM, Selik R, Neal JJ, Fleming PL (2001) Survival after AIDS diagnosis in adolescents and adults during the treatment era, United States, 1994–1997. JAMA 285:1308–1315PubMedCrossRefGoogle Scholar
  69. Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD (2001) Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20:3272–3281PubMedCrossRefGoogle Scholar
  70. Louie M, Hogan C, Di Mascio M, Hurley A, Simon V, Rooney J, Ruiz N, Brun S, Sun E, Perelson AS, Ho DD, Markowitz M (2003) Determining the relative efficacy of highly active antiretro-viral therapy. J Infect Dis 187:896–900PubMedCrossRefGoogle Scholar
  71. Maga G, Gemma S, Fattorusso C et al. (2005) Specific targeting of hepatitis virus C NS3 helicase. Biochemistry 44:9637–9644PubMedCrossRefGoogle Scholar
  72. Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, Prada G, Morales-Ramirez JO, Crumpacker CS, Isaacs RD, Gilde LR, Wan H, Miller MD, Wenning LA, Teppler H; Protocol 004 Part II Study Team (2007) Rapid and durable antiretroviral effect of the HIV-1 Integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J Acquir Immune Defic Syndr 46:125–133PubMedCrossRefGoogle Scholar
  73. McNab AR, Desai P, Person S, Roof LL, Thomsen DR, Newcomb WW, Brown JC, Homa FL (1998) The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol 72:1060–1070PubMedGoogle Scholar
  74. Merluzzi VJ, Hargrave KD, Labadia M, Grozinger K, Skoog M, Wu JC, Shih CK, Eckner K, Hattox S, Adams J et al (1990) Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250:1411–1413PubMedCrossRefGoogle Scholar
  75. Murray JM, Emery S, Kelleher AD, Law M, Chen J, Hazuda DJ, Nguyen BY, Teppler H, Cooper DA (2007) Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS 21:2315–2321PubMedGoogle Scholar
  76. Nagelschmitz J, Moeller JG, Stass HH, Wadel C, Kuhlmann J (1999) Safety, tolerability, and phar-macokinetics of single oral doses of BAY 38–4766—a novel nonnucleosidic inhibitor of human cytomegalovirus (HCMV) replication—in healthy male subjects. In: Interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, WA, Abstract 945Google Scholar
  77. Patel AH, Rixon FJ, Cunningham C, Davison AJ (1996) Isolation and characterization of herpes simplex virus type 1 mutants defective in the UL6 gene. Virology 217:111–123PubMedCrossRefGoogle Scholar
  78. Pauwels R (2004) New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. Curr Opin Pharmacol 4:437–446PubMedCrossRefGoogle Scholar
  79. Pauwels R, Andries K, Desmyter J, Schols D, Kukla MJ, Breslin HJ, Raeymaeckers A, Van Gelder J, Woestenborghs R, Heykants J et al (1990) Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 343:470–474PubMedCrossRefGoogle Scholar
  80. Polis MA, Sidorov IA, Yoder C, Jankelevich S, Metcalf J, Mueller BU, Dimitrov MA, Pizzo P, Yarchoan R, Dimitrov DS (2001) Correlation between reduction in plasma HIV-1 RNA concentration 1 week after start of antiretroviral treatment and longer-term efficacy. Lancet 358: 1760–1765PubMedCrossRefGoogle Scholar
  81. Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236–248PubMedCrossRefGoogle Scholar
  82. Reefschlaeger J, Bender W, Eckenberg P, Goldmann S, Haerter M, Hallenberger S et al (1999) Antiviral activity and selectivity of BAY 38–4766—a novel nonnucleosidic inhibitor of human cytomegalovirus replication. In: Interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, WA, Abstract 942Google Scholar
  83. Rübsamen-Waigmann H, Huguenel E, Paessens A, Kleim JP, Wainberg MA, Shah A (1997) Second-generation non-nucleosidic reverse transcriptase inhibitor HBY097 and HIV-1 viral load. Lancet 349:1517PubMedCrossRefGoogle Scholar
  84. Sarasini A, Baldanti F, Furione M, Percivalle E, Brerra R, Barbi M et al (1995) Double resistance to ganciclovir and foscarnet of 4 human cytomegalovirus strains recovered from AIDS patients. J Med Virol 47:237–244PubMedCrossRefGoogle Scholar
  85. Satoh M, Motomura T, Matsuda T, Kondo K, Ando K, Matsuda K, Miyake S, Uehara H (2005) 4-Oxoquinoline compounds and utilization thereof as HIV integrase inhibitors. PCT Int. Appl. WO 2005113508Google Scholar
  86. Savva CGW, Holzenburg A, Bogner E (2004) Insights into the structure of human cytomegalovirus large terminase subunit pUL56. FEBS Lett 563:135–140PubMedCrossRefGoogle Scholar
  87. Scheffczik H, Savva CGW, Holzenburg A, Kolesnikova L, Bogner E (2002) The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res 30:1695–1703PubMedCrossRefGoogle Scholar
  88. Scholz B, Rechter S, Drach JC, Townsend LB, Bogner E (2003) Identification of the ATP-binding site in the terminase subunit pUL56 of human cytomegalovirus. Nucleic Acids Res 31:1426–1433PubMedCrossRefGoogle Scholar
  89. Sedaghat AR, Dinoso JB, Shen L, Wilke CO, Siliciano RF (2008) Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc Natl Acad Sci USA 105:4832–4837PubMedCrossRefGoogle Scholar
  90. Sheaffer AK, Newcomb WW, Gao M, Yu D, Weller SK, Brown JC, Tenney DJ (2001) Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J Virol 75:687–698PubMedCrossRefGoogle Scholar
  91. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, Kano M, Ikeda S, Matsuoka M (2008) Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 82:764–774PubMedCrossRefGoogle Scholar
  92. Shulman NS, Bosch RJ, Mellors JW, Albrecht MA, Katzenstein DA (2004) Genetic correlates of efavirenz hypersusceptibility. AIDS 13:1781–1785CrossRefGoogle Scholar
  93. Staszewski S, Morales-Ramirez J, Tashima KT, Rachlis A, Skiest D, Stanford J, Stryker R, Johnson P, Labriola DF, Farina D et al (1999) Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med 341:1865–1873PubMedCrossRefGoogle Scholar
  94. Stellbrink HJ (2007) Antiviral drugs in the treatment of AIDS: what is in the pipeline? Eur J Med Res 12:483–495PubMedGoogle Scholar
  95. Sticht J, Humbert M, Findlow S et al. (2005) A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 12:671–677PubMedCrossRefGoogle Scholar
  96. Tang C, Loeliger E, Kinde I et al. (2003) Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 327:1013–1020PubMedCrossRefGoogle Scholar
  97. Temin HM (1980) Viral oncogenes. Cold Spring Harb Symp Quant Biol 44 (Pt 1):1–7Google Scholar
  98. Tengelsen LA, Pederson NE, Shaver PR, Wathen MW, Homa FL (1993) Herpes simplex virus type 1 DNA cleavage and encapsidation require the product of the UL28 gene: isolation and characterization of two UL28 deletion mutants. J Virol 67:3470–3480PubMedGoogle Scholar
  99. Torriani FJ, Freeman WR, Macdonald JC, Karavellas MP, Durand DM, Jeffrey DD et al. (2000) CMV retinitis recurs after stopping treatment in virological and immunological failures of potent antiretroviral therapy. AIDS 14:173–180PubMedCrossRefGoogle Scholar
  100. Townsend L, Devivar R, Turk S, Nassiri M, Drach J (1995) Design, synthesis, and antiviral activity of certain 2,5,6-trihalo-1-(beta-d-ribofuranosyl)benzimidazoles. J Med Chem 38:4098–4105PubMedCrossRefGoogle Scholar
  101. Turlure F, Devroe E, Silver PA, Engelman A (2004) Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208PubMedCrossRefGoogle Scholar
  102. Umehara T, Fukuda K, Nishikawa F, Kohara M, Hasegawa T, Nishikawa S (2005) Rational design of dual-functional aptamers that inhibit the protease and helicase activities of HCV NS3. J Biochem 137:339–347PubMedCrossRefGoogle Scholar
  103. Underwood M, Harvey R, Stanat S, Hemphill M, Miller T, Drach J, Townsend L, Biron K (1998) Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J Virol 72:717–725PubMedGoogle Scholar
  104. Van Maele B, Debyser Z (2005) HIV-1 integration: an interplay between HIV-1 integrase, cellular, and viral proteins. AIDS Rev 7:26–43PubMedGoogle Scholar
  105. Wai JS, Egbertson MS, Payne LS, Fisher TE, Embrey MW, Tran LO, Melamed JY, Langford HM, Guare JP Jr, Zhuang L et al (2000) HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. J Med Chem 43:4923–4926PubMedCrossRefGoogle Scholar
  106. Wainberg MA (2003) HIV resistance to nevirapine and other non-nucleoside reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 34:2–7CrossRefGoogle Scholar
  107. Weber O, Schlemmer KH, Hartmann E, Hagelschuer I, Paessens A, Graef E, Deres K, Goldmann S, Niewoehner U, Stoltefuss J, Haebich D, Ruebsamen-Waigmann H, Wohlfeil S (2002) Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antiviral Res 54:69–78PubMedCrossRefGoogle Scholar
  108. Wiskerchen M, Muesing MA (1995) Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol 69:376–386PubMedGoogle Scholar
  109. Witvrouw M, Fikkert V, Vercammen J, Van Maele B, Engelborghs Y, Debyser Z (2005) Identification of authentic inhibitors of HIV-integration. Curr Med Chem Anti-Infective Agents 4:153–165CrossRefGoogle Scholar
  110. Wolfe P, Hawley P, Boccia G, Clendeninn N, Paradiso L, Shaw T, Chi-Burris K (2001) Safety and efficacy of capravirine versus placebo in HIV-infected patients failing a NNRTI-containing regimen: results of a Phase II, double-blind, placebo-controlled study. In: 8th conference on retroviruses and opportunistic infections. Chicago, IL, Abstract 323Google Scholar
  111. Yu D, Weller SK (1998) Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J Virol 72:7428–7439PubMedGoogle Scholar
  112. Yu D, Sheaffer AK, Tenney DJ, Weller SK (1997) Characterization of ICP6:lacZ insertion mutants of the UL15 gene of herpes simplex virus type 1 reveals the translation of two proteins. J Virol 71:2656–2665PubMedGoogle Scholar
  113. Zhou J, Yuan X, Dismuke D et al. (2004) Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J Virol 78:922–929PubMedCrossRefGoogle Scholar
  114. Zhuang L, Wai JS, Embrey MW, Fisher TE, Egbertson MS, Payne LS, Guare JP Jr, Vacca JP, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Witmer MV, Moyer G, Schleif WA, Gabryel-ski LJ, Leonard YM, Lynch JJ Jr, Michelson SR, Young SD (2003) Design and synthesis of 8-hydroxy-[1,6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J Med Chem 46:453–456PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Aicuris GmbH und Co. KGBayer Pharma- und ChemieparkGermany
  2. 2.HBSCGermany

Personalised recommendations