Viral Protease Inhibitors

  • Jeffrey Anderson
  • Celia Schiffer
  • Sook-Kyung Lee
  • Ronald Swanstrom
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 189)

This review provides an overview of the development of viral protease inhibitors as antiviral drugs. We concentrate on HIV-1 protease inhibitors, as these have made the most significant advances in the recent past. Thus, we discuss the biochemistry of HIV-1 protease, inhibitor development, clinical use of inhibitors, and evolution of resistance. Since many different viruses encode essential proteases, it is possible to envision the development of a potent protease inhibitor for other viruses if the processing site sequence and the catalytic mechanism are known. At this time, interest in developing inhibitors is limited to viruses that cause chronic disease, viruses that have the potential to cause large-scale epidemics, or viruses that are sufficiently ubiquitous that treating an acute infection would be beneficial even if the infection was ultimately self-limiting. Protease inhibitor development is most advanced for hepatitis C virus (HCV), and we also provide a review of HCV NS3/4A serine protease inhibitor development, including combination therapy and resistance. Finally, we discuss other viral proteases as potential drug targets, including those from Dengue virus, cytomegalovirus, rhinovirus, and coronavirus.


Severe Acute Respiratory Syndrome Severe Acute Respiratory Syndrome Coronavirus Viral Protease Inhibitor Substrate Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaire M, Chernaia MM, Malcolm BA, James MN (1994) Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76PubMedCrossRefGoogle Scholar
  2. Altman MD, Nalivaika EA, Prabu-Jeyabalan M, Schiffer CA, Tidor B (2008) Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins 70:678–694PubMedCrossRefGoogle Scholar
  3. Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R (2002) Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21:3213–3224PubMedCrossRefGoogle Scholar
  4. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767PubMedCrossRefGoogle Scholar
  5. Arias CF, Preugschat F, Strauss JH (1993) Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193:888–899PubMedCrossRefGoogle Scholar
  6. Bartenschlager R (1999) The NS3/4A proteinase of the hepatitis C virus: unravelling structure and function of an unusual enzyme and a prime target for antiviral therapy. J Viral Hepat 6:165–181PubMedCrossRefGoogle Scholar
  7. Binford SL, Weady PT, Maldonado F, Brothers MA, Matthews DA, Patick AK (2007) In vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 51:4366–4373PubMedCrossRefGoogle Scholar
  8. Brignole EJ, Gibson W (2007) Enzymatic activities of human cytomegalovirus maturational protease assemblin and its precursor (pPR, pUL80a) are comparable: [corrected] maximal activity of pPR requires self-interaction through its scaffolding domain. J Virol 81:4091–4103PubMedCrossRefGoogle Scholar
  9. Cahn P, Villacian J, Lazzarin A, Katlama C, Grinsztejn B, Arasteh K, Lopez P, Clumeck N, Gerstoft J, Stavrianeas N, Moreno S, Antunes F, Neubacher D, Mayers D (2006) Ritonavir-boosted tipranavir demonstrates superior efficacy to ritonavir-boosted protease inhibitors in treatment-experienced HIV-infected patients: 24-week results of the RESIST-2 trial. Clin Infect Dis 43:1347–1356PubMedCrossRefGoogle Scholar
  10. Carrillo A, Stewart KD, Sham HL, Norbeck DW, Kohlbrenner WE, Leonard JM, Kempf DJ, Molla A (1998) In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J Virol 72:7532–7541PubMedGoogle Scholar
  11. Chambers TJ, Nestorowicz A, Amberg SM, Rice CM (1993) Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol 67:6797–6807PubMedGoogle Scholar
  12. Chellappan S, Kiran Kumar Reddy GS, Ali A, Nalam MN, Anjum SG, Cao H, Kairys V, Fernandes MX, Altman MD, Tidor B, Rana TM, Schiffer CA, Gilson MK (2007) Design of mutationresistant HIV protease inhibitors with the substrate envelope hypothesis. Chem Biol Drug Des 69:455CrossRefGoogle Scholar
  13. Chen P, Tsuge H, Almassy RJ, Gribskov CL, Katoh S, Vanderpool DL, Margosiak SA, Pinko C, Matthews DA, Kan CC (1996) Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86:835–843PubMedCrossRefGoogle Scholar
  14. Chen Z, Li Y, C1hen E, Hall DL, Darke PL, Culberson C, Shafer JA, Kuo LC (1994) Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J Biol Chem 269:26344–26348PubMedGoogle Scholar
  15. Cicero DO, Barbato G, Koch U, Ingallinella P, Bianchi E, Nardi MC, Steinkuhler C, Cortese R, Matassa V, De Francesco R, Pessi A, Bazzo R (1999) Structural characterization of the interactions of optimized product inhibitors with the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein by NMR and modelling studies. J Mol Biol 289:385–396PubMedCrossRefGoogle Scholar
  16. Clotet B, Bellos N, Molina JM, Cooper D, Goffard JC, Lazzarin A, Wohrmann A, Katlama C, Wilkin T, Haubrich R, Cohen C, Farthing C, Jayaweera D, Markowitz M, Ruane P, Spinosa-Guzman S, Lefebvre E (2007) Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 369:1169–1178PubMedCrossRefGoogle Scholar
  17. Colonno R, Rose R, McLaren C, Thiry A, Parkin N, Friborg J (2004) Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis 189:1802–1810PubMedCrossRefGoogle Scholar
  18. Condra JH, Holder DJ, Schleif WA, Blahy OM, Danovich RM, Gabryelski LJ, Graham DJ, Laird D, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M, Yang T, Chodakewitz JA, Deutsch PJ, Leavitt RY, Massari FE, Mellors JW, Squires KE, Steigbigel RT, Teppler H, Emini EA (1996) Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol 70:8270–8276PubMedGoogle Scholar
  19. Cottier V, Barberis A, Luthi U (2006) Novel yeast cell-based assay to screen for inhibitors of human cytomegalovirus protease in a high-throughput format. Antimicrob Agents Chemother 50:565–571PubMedCrossRefGoogle Scholar
  20. Craig JC, Duncan IB, Hockley D, Grief C, Roberts NA, Mills JS (1991) Antiviral properties of Ro 31–8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Res 16:295–305PubMedCrossRefGoogle Scholar
  21. Danner SA, Carr A, Leonard JM, Lehman LM, Gudiol F, Gonzales J, Raventos A, Rubio R, Bouza E, Pintado V et al (1995) A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. European—Australian Collaborative Ritonavir Study Group. N Engl J Med 333:1528–1533PubMedCrossRefGoogle Scholar
  22. Darke PL, Cole JL, Waxman L, Hall DL, Sardana MK, Kuo LC (1996) Active human cytomegalovirus protease is a dimer. J Biol Chem 271:7445–7449PubMedCrossRefGoogle Scholar
  23. De Francesco R, Carfi A (2007) Advances in the development of new therapeutic agents targeting the NS3—4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv Drug Deliv Rev 59:1242–1262PubMedCrossRefGoogle Scholar
  24. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USAGoogle Scholar
  25. Dierynck I, De Wit M, Gustin E, Keuleers I, Vandersmissen J, Hallenberger S, Hertogs K (2007) Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol 81:13845–13851PubMedCrossRefGoogle Scholar
  26. Erbel P, Schiering N, D'Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373PubMedCrossRefGoogle Scholar
  27. Fear G, Komarnytsky S, Raskin I (2007) Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther 113:354–368PubMedCrossRefGoogle Scholar
  28. Forestier N, Reesink HW, Weegink CJ, McNair L, Kieffer TL, Chu HM, Purdy S, Jansen PL, Zeuzem S (2007) Antiviral activity of telaprevir (VX-950) and peginterferon alfa-2a in patients with hepatitis C. Hepatology 46:640–648PubMedCrossRefGoogle Scholar
  29. Gathe J, Cooper DA, Farthing C, Jayaweera D, Norris D, Pierone G Jr, Steinhart CR, Trottier B, Walmsley SL, Workman C, Mukwaya G, Kohlbrenner V, Dohnanyi C, McCallister S, Mayers D (2006) Efficacy of the protease inhibitors tipranavir plus ritonavir in treatment-experienced patients: 24-week analysis from the RESIST-1 trial. Clin Infect Dis 43:1337–1346PubMedCrossRefGoogle Scholar
  30. Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M, Jonsson CB, Roush WR, McKerrow J, Craik CS (2007) Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry 46:8744–8752PubMedCrossRefGoogle Scholar
  31. Gonzalez de Requena D, Gallego O, Valer L, Jimenez-Nacher I, Soriano V (2004) Prediction of virological response to lopinavir/ritonavir using the genotypic inhibitory quotient. AIDS Res Hum Retroviruses 20:275–278CrossRefGoogle Scholar
  32. Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hsyu P, Patick AK, Smith GJ IIIrd, Zalman LS (2003) Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother 47:3907–3916PubMedCrossRefGoogle Scholar
  33. Hinrichsen H, Benhamou Y, Wedemeyer H, Reiser M, Sentjens RE, Calleja JL, Forns X, Erhardt A, Cronlein J, Chaves RL, Yong CL, Nehmiz G, Steinmann GG (2004) Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology 127:1347–1355PubMedCrossRefGoogle Scholar
  34. Hoetelmans RM (1999) Pharmacology of antiretroviral drugs. Antivir Ther 4(Suppl 3):29–41PubMedGoogle Scholar
  35. Hoffman NG, Schiffer CA, Swanstrom R (2003) Covariation of amino acid positions in HIV-1 protease. Virology 314:536–548PubMedCrossRefGoogle Scholar
  36. Hon CC, Lam TY, Shi ZL, Drummond AJ, Yip CW, Zeng F, Lam PY, Leung FC (2008) Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol 82:1819–1826PubMedCrossRefGoogle Scholar
  37. Ingallinella P, Altamura S, Bianchi E, Taliani M, Ingenito R, Cortese R, De Francesco R, Steinkuhler C, Pessi A (1998) Potent peptide inhibitors of human hepatitis C virus NS3 protease are obtained by optimizing the cleavage products. Biochemistry 37:8906–8914PubMedCrossRefGoogle Scholar
  38. Jacobsen H, Yasargil K, Winslow DL, Craig JC, Krohn A, Duncan IB, Mous J (1995) Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31–8959. Virology 206:527–534PubMedCrossRefGoogle Scholar
  39. Jacobson IM, Everson GT, Gordon SC, Kauffman R, McNair L, Muir A, McHutchison JG (2007) Interim analysis results from a phase 2 study of telaprevir with peginterferon alfa-2A and ribavirin in treatmentnaive subjects with hepatitis C. AASLD 58th Annual Meet, Abstract 177Google Scholar
  40. Johnson M (2006) Response to “Atazanavir/ritonavir versus lopinavir/ritonavir: equivalent or different efficacy profiles?” by Hill. AIDS 20:1987Google Scholar
  41. Johnston E, Winters MA, Rhee SY, Merigan TC, Schiffer CA, Shafer RW (2004) Association of a novel human immunodeficiency virus type 1 protease substrate cleft mutation, L23I, with protease inhibitor therapy and in vitro drug resistance. Antimicrob Agents Chemother 48: 4864–4868PubMedCrossRefGoogle Scholar
  42. Kempf DJ, Marsh KC, Denissen JF, McDonald E, Vasavanonda S, Flentge CA, Green BE, Fino L, Park CH, Kong XP et al (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci USA 92:2484–2488PubMedCrossRefGoogle Scholar
  43. Kempf DJ, Marsh KC, Kumar G, Rodrigues AD, Denissen JF, McDonald E, Kukulka MJ, Hsu A, Granneman GR, Baroldi PA, Sun E, Pizzuti D, Plattner JJ, Norbeck DW, Leonard JM (1997) Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother 41:654–660PubMedGoogle Scholar
  44. Kempf DJ, Isaacson JD, King MS, Brun SC, Xu Y, Real K, Bernstein BM, Japour AJ, Sun E, Rode RA (2001) Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol 75:7462–7469PubMedCrossRefGoogle Scholar
  45. Khayat R, Batra R, Qian C, Halmos T, Bailey M, Tong L (2003) Structural and biochemical studies of inhibitor binding to human cytomegalovirus protease. Biochemistry 42:885–891PubMedCrossRefGoogle Scholar
  46. Kim JL, Morgenstern KA, Lin C, Fox T, Dwyer MD, Landro JA, Chambers SP, Markland W, Lepre CA, O'Malley ET, Harbeson SL, Rice CM, Murcko MA, Caron PR, Thomson JA (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355PubMedCrossRefGoogle Scholar
  47. King JR, Wynn H, Brundage R, Acosta EP (2004a) Pharmacokinetic enhancement of protease inhibitor therapy. Clin Pharmacokinet 43:291–310CrossRefGoogle Scholar
  48. King NM, Prabu-Jeyabalan M, Nalivaika EA, Wigerinck P, de Béthune MP, Schiffer CA (2004b). Structural and thermodynamic basis for the binding of TMC114, a nextgeneration human immunodeficiency virus type 1 protease inhibitor. J Virol 78:12012–12021CrossRefGoogle Scholar
  49. Kitchen VS, Skinner C, Ariyoshi K, Lane EA, Duncan IB, Burckhardt J, Burger HU, Bragman K, Pinching AJ, Weber JN (1995) Safety and activity of saquinavir in HIV infection. Lancet 345:952–955PubMedCrossRefGoogle Scholar
  50. Koh Y, Nakata H, Maeda K, Ogata H, Bilcer G, Devasamudram T, Kincaid JF, Boross P, Wang YF, Tie Y, Volarath P, Gaddis L, Harrison RW, Weber IT, Ghosh AK, Mitsuya H (2003) Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob Agents Chemother 47:3123–3129PubMedCrossRefGoogle Scholar
  51. Krohn A, Redshaw S, Ritchie JC, Graves BJ, Hatada MH (1991) Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J Med Chem 34:3340–3342PubMedCrossRefGoogle Scholar
  52. Lamarre D, Anderson PC, Bailey M, Beaulieu P, Bolger G, Bonneau P, Bos M, Cameron DR, Cartier M, Cordingley MG, Faucher AM, Goudreau N, Kawai SH, Kukolj G, Lagace L, La-Plante SR, Narjes H, Poupart MA, Rancourt J, Sentjens RE, St George R, Simoneau B, Steinmann G, Thibeault D, Tsantrizos YS, Weldon SM, Yong CL, Llinas-Brunet M (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426:186–189PubMedCrossRefGoogle Scholar
  53. Lee TW, Cherney MM, Huitema C, Liu J, James KE, Powers JC, Eltis LD, James MN (2005) Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substratelike aza-peptide epoxide. J Mol Biol 353:1137–1151PubMedCrossRefGoogle Scholar
  54. Liang PH (2006) Characterization and inhibition of SARS-coronavirus main protease. Curr Top Med Chem 6:361–376PubMedCrossRefGoogle Scholar
  55. Lin C (2006) HCV NS3/4A serine protease. In: Tan SL (ed) Hepatitis C viruses: genomes and molecular biology. Horizon Scientific, Norfolk, UK, pp 163–206Google Scholar
  56. Liu FY, Roizman B (1991) The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol 65:5149–5156PubMedGoogle Scholar
  57. Llinas-Brunet M, Bailey M, Fazal G, Goulet S, Halmos T, Laplante S, Maurice R, Poirier M, Poupart MA, Thibeault D, Wernic D, Lamarre D (1998) Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg Med Chem Lett 8:1713–1718PubMedCrossRefGoogle Scholar
  58. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113PubMedCrossRefGoogle Scholar
  59. Love RA, Parge HE, Wickersham JA, Hostomsky Z, Habuka N, Moomaw EW, Adachi T, Hostomska Z (1996) The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsinlike fold and a structural zinc binding site. Cell 87:331–342PubMedCrossRefGoogle Scholar
  60. MacManus S, Yates PJ, Elston RC, White S, Richards N, Snowden W (2004) GW433908/ritonavir once daily in antiretroviral therapy-naive HIV-infected patients: absence of protease resistance at 48 weeks. AIDS 18:651–655PubMedCrossRefGoogle Scholar
  61. Margosiak SA, Vanderpool DL, Sisson W, Pinko C, Kan CC (1996) Dimerization of the human cytomegalovirus protease: kinetic and biochemical characterization of the catalytic homodimer. Biochemistry 35:5300–5307PubMedCrossRefGoogle Scholar
  62. Markowitz M, Mo H, Kempf DJ, Norbeck DW, Bhat TN, Erickson JW, Ho DD (1995a) Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol 69:701–706Google Scholar
  63. Markowitz M, Saag M, Powderly WG, Hurley AM, Hsu A, Valdes JM, Henry D, Sattler F, La Marca A, Leonard JM et al (1995b) A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N Engl J Med 333:1534–1539CrossRefGoogle Scholar
  64. Markowitz M, Conant M, Hurley A, Schluger R, Duran M, Peterkin J, Chapman S, Patick A, Hendricks A, Yuen GJ, Hoskins W, Clendeninn N, Ho DD (1998) A preliminary evaluation of nelfinavir mesylate, an inhibitor of human immunodeficiency virus (HIV)-1 protease, to treat HIV infection. J Infect Dis 177:1533–1540PubMedCrossRefGoogle Scholar
  65. Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G, Sisson W, Villafranca JE, Janson CA, McElroy HE, Gribskov CL et al (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771PubMedCrossRefGoogle Scholar
  66. Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Zalman LS, Hendrickson TF, Love RA, Prins TJ, Marakovits JT, Zhou R, Tikhe J, Ford CE, Meador JW, Ferre RA, Brown EL, Binford SL, Brothers MA, DeLisle DM, Worland ST (1999) Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci USA 96:11000–11007PubMedCrossRefGoogle Scholar
  67. Melino S, Paci M (2007) Progress for dengue virus diseases. Towards the NS2B-NS3pro inhibition for a therapeutic-based approach. FEBS J 274:2986–3002PubMedCrossRefGoogle Scholar
  68. Murphy RL, Brun S, Hicks C, Eron JJ, Gulick R, King M, White AC Jr, Benson C, Thompson M, Kessler HA, Hammer S, Bertz R, Hsu A, Japour A, Sun E (2001) ABT-378/ritonavir plus stavudine and lamivudine for the treatment of antiretroviral-naive adults with HIV-1 infection: 48-week results. AIDS 15:F1–F9PubMedCrossRefGoogle Scholar
  69. Partaledis JA, Yamaguchi K, Tisdale M, Blair EE, Falcione C, Maschera B, Myers RE, Pazhanisamy S, Futer O, Cullinan AB et al (1995) In vitro selection and characterization of human immunodeficiency virus type 1 (HIV-1) isolates with reduced sensitivity to hydroxyethylamino sulfonamide inhibitors of HIV-1 aspartyl protease. J Virol 69:5228–5235PubMedGoogle Scholar
  70. Patick AK (2006) Rhinovirus chemotherapy. Antiviral Res 71:391–396PubMedCrossRefGoogle Scholar
  71. Patick AK, Brothers MA, Maldonado F, Binford S, Maldonado O, Fuhrman S, Petersen A, Smith GJ 3rd, Zalman LS, Burns-Naas LA, Tran JQ (2005) In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother 49:2267–2275PubMedCrossRefGoogle Scholar
  72. Pause A, Kukolj G, Bailey M, Brault M, Do F, Halmos T, Lagace L, Maurice R, Marquis M, McKercher G, Pellerin C, Pilote L, Thibeault D, Lamarre D (2003) An NS3 serine protease inhibitor abrogates replication of subgenomic hepatitis C virus RNA. J Biol Chem 278:20374–20380PubMedCrossRefGoogle Scholar
  73. Perni RB, Almquist SJ, Byrn RA, Chandorkar G, Chaturvedi PR, Courtney LF, Decker CJ, Dinehart K, Gates CA, Harbeson SL, Heiser A, Kalkeri G, Kolaczkowski E, Lin K, Luong YP, Rao BG, Taylor WP, Thomson JA, Tung RD, Wei Y, Kwong AD, Lin C (2006) Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3–4A serine protease. Antimicrob Agents Chemother 50:899–909PubMedCrossRefGoogle Scholar
  74. Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH (2004) Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J Virol 78:8477–8485PubMedCrossRefGoogle Scholar
  75. Plosker GL, Figgitt DP (2003) Tipranavir. Drugs 63:1611–1618PubMedCrossRefGoogle Scholar
  76. Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, Lau SK, Woo PC, Suen KY, Yuen KY, Guan Y, Peiris JS (2005) Identification of a novel coronavirus in bats. J Virol 79:2001–2009PubMedCrossRefGoogle Scholar
  77. Poppe SM, Slade DE, Chong KT, Hinshaw RR, Pagano PJ, Markowitz M, Ho DD, Mo H, Gorman RR IIIrd, Dueweke TJ, Thaisrivongs S, Tarpley WG (1997) Antiviral activity of the dihydropyrone PNU-140690, a new nonpeptidic human immunodeficiency virus protease inhibitor. Antimicrob Agents Chemother 41:1058–1063PubMedGoogle Scholar
  78. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 10:369–381PubMedCrossRefGoogle Scholar
  79. Prabu-Jeyabalan M, King NM, Nalivaika EA, Heilek-Snyder G, Cammack N, Schiffer CA (2006). Substrate envelope and drug resistance: crystal structure of RO1 in complex with wild-type human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother 50:1518–1512PubMedCrossRefGoogle Scholar
  80. Pulido F, Delgado R, Perez-Valero I, Gonzalez-Garcia J, Miralles P, Arranz A, Hernando A, Arribas JR (2008) Long-term (4 years) efficacy of lopinavir/ritonavir monotherapy for maintenance of HIV suppression. J Antimicrob Chemother 61:1359–1361PubMedCrossRefGoogle Scholar
  81. Qiu X, Culp JS, DiLella AG, Hellmig B, Hoog SS, Janson CA, Smith WW, Abdel-Meguid SS (1996) Unique fold and active site in cytomegalovirus protease. Nature 383:275–279PubMedCrossRefGoogle Scholar
  82. Racaniello VR (2001) Picornaviridae: te viruses and their replication. In: Howley DMKaPM (ed) Fundamental virology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 529–566Google Scholar
  83. Rajagopalan P, Stevens S, Stoceva A, Brandhumber B, Zahang H, Gale M, Blatt LM, Seiwert S, Kossen K (2007) Genotype coverage of the HCV NS3/4A Protease Inhibitor ITMN-191 (R7227): biochemical data reveals potent inhibition and slow dissociation with Genotype 1–6 Proteases. AASLD, Abstract 1386Google Scholar
  84. Randolph JT, DeGoey DA (2004) Peptidomimetic inhibitors of HIV protease. Curr Top Med Chem 4:1079–1095PubMedCrossRefGoogle Scholar
  85. Reesink HW, Zeuzem S, Weegink CJ, Forestier N, van Vliet A, van de Wetering de Rooij J, McNair L, Purdy S, Kauffman R, Alam J, Jansen PL (2006) Rapid decline of viral RNA in hepatitis C patients treated with VX-950: a phase Ib, placebo-controlled, randomized study. Gastroenterology 131:997–1002PubMedCrossRefGoogle Scholar
  86. Reiser M, Hinrichsen H, Benhamou Y, Reesink HW, Wedemeyer H, Avendano C, Riba N, Yong CL, Nehmiz G, Steinmann GG (2005) Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology 41:832–835PubMedCrossRefGoogle Scholar
  87. Rhee SY, Fessel WJ, Zolopa AR, Hurley L, Liu T, Taylor J, Nguyen DP, Slome S, Klein D, Horberg M, Flamm J, Follansbee S, Schapiro JM, Shafer RW (2005) HIV-1 Protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J Infect Dis 192:456–465PubMedCrossRefGoogle Scholar
  88. Robinson BS, Riccardi KA, Gong YF, Guo Q, Stock DA, Blair WS, Terry BJ, Deminie CA, Djang F, Colonno RJ, Lin PF (2000) BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrob Agents Chemother 44:2093–2099PubMedCrossRefGoogle Scholar
  89. Rodriguez-French A, Boghossian J, Gray GE, Nadler JP, Quinones AR, Sepulveda GE, Millard JM, Wannamaker PG (2004) The NEAT study: a 48-week open-label study to compare the antiviral efficacy and safety of GW433908 versus nelfinavir in antiretroviral therapy-naive HIV-1-infected patients. J Acquir Immune Defic Syndr 35:22–32PubMedCrossRefGoogle Scholar
  90. Rusconi S, La Seta Catamancio S, Citterio P, Kurtagic S, Violin M, Balotta C, Moroni M, Galli M, d'Arminio-Monforte A (2000) Susceptibility to PNU-140690 (Tipranavir) of human immunodeficiency virus type 1 isolates derived from patients with multidrug resistance to other protease inhibitors. Antimicrob Agents Chemother 44:1328–1332PubMedCrossRefGoogle Scholar
  91. Sanne I, Piliero P, Squires K, Thiry A, Schnittman S (2003) Results of a phase 2 clinical trial at 48 weeks (AI424–007): a dose-ranging, safety, and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naive subjects. J Acquir Immune Defic Syndr 32:18–29PubMedGoogle Scholar
  92. Sarrazin C, Rouzier R, Wagner F, Forestier N, Larrey D, Gupta SK, Hussain M, Shah A, Cutler D, Zhang J, Zeuzem S (2007) SCH 503034, a novel hepatitis C virus protease inhibitor, plus pegylated interferon alpha-2b for genotype 1 nonresponders. Gastroenterology 132: 1270–1278PubMedCrossRefGoogle Scholar
  93. Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen CM, Kati W, Stewart K, Lal R, Hsu A, Betebenner D, Korneyeva M, Vasavanonda S, McDonald E, Saldivar A, Wideburg N, Chen X, Niu P, Park C, Jayanti V, Grabowski B, Granneman GR, Sun E, Japour AJ, Leonard JM, Plattner JJ, Norbeck DW (1998) ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother 42:3218–3224PubMedGoogle Scholar
  94. Shieh HS, Kurumbail RG, Stevens AM, Stegeman RA, Sturman EJ, Pak JY, Wittwer AJ, Palmier MO, Wiegand RC, Holwerda BC, Stallings WC (1996) Three-dimensional structure of human cytomegalovirus protease. Nature 383:279–282PubMedCrossRefGoogle Scholar
  95. Shimba N, Nomura AM, Marnett AB, Craik CS (2004) Herpesvirus protease inhibition by dimer disruption. J Virol 78:6657–6665PubMedCrossRefGoogle Scholar
  96. Simmen K, Lenz O, Lin T, Fanning G, Raboisson P, de Kock H, van ‘t Klooster G, Rosenquist A, Edlund M, Nilsson M, Vrang L, Samuelsson B (2007) In vitro and preclinical pharmacokinetics of the HCV protease inhibitor, TMC435350. AASLD, Abstract 1390Google Scholar
  97. Squires K, Lazzarin A, Gatell JM, Powderly WG, Pokrovskiy V, Delfraissy JF, Jemsek J, Rivero A, Rozenbaum W, Schrader S, Sension M, Vibhagool A, Thiry A, Giordano M (2004) Comparison of once-daily atazanavir with efavirenz, each in combination with fixed-dose zidovudine and lamivudine, as initial therapy for patients infected with HIV. J Acquir Immune Defic Syndr 36:1011–1019PubMedCrossRefGoogle Scholar
  98. St Clair MH, Millard J, Rooney J, Tisdale M, Parry N, Sadler BM, Blum MR, Painter G (1996) In vitro antiviral activity of 141W94 (VX-478) in combination with other antiretroviral agents. Antiviral Res 29:53–56PubMedCrossRefGoogle Scholar
  99. Stein DS, Fish DG, Bilello JA, Preston SL, Martineau GL, Drusano GL (1996) A 24-week openlabel phase I/II evaluation of the HIV protease inhibitor MK-639 (indinavir). AIDS 10:485–492PubMedCrossRefGoogle Scholar
  100. Steinkuhler C, Urbani A, Tomei L, Biasiol G, Sardana M, Bianchi E, Pessi A, De Francesco R (1996) Activity of purified hepatitis C virus protease NS3 on peptide substrates. J Virol 70:6694–6700PubMedGoogle Scholar
  101. Steinkuhler C, Biasiol G, Brunetti M, Urbani A, Koch U, Cortese R, Pessi A, De Francesco R (1998) Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37:8899–8905PubMedCrossRefGoogle Scholar
  102. Stoll V, Qin W, Stewart KD, Jakob C, Park C, Walter K, Simmer RL, Helfrich R, Bussiere D, Kao J, Kempf D, Sham HL, Norbeck DW (2002) X-ray crystallographic structure of ABT-378 (lopinavir) bound to HIV-1 protease. Bioorg Med Chem 10:2803–2806PubMedCrossRefGoogle Scholar
  103. Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 263–334Google Scholar
  104. Thaisrivongs S, Strohbach JW (1999) Structure-based discovery of Tipranavir disodium (PNU-140690E): a potent, orally bioavailable, nonpeptidic HIV protease inhibitor. Biopolymers 51:51–58PubMedCrossRefGoogle Scholar
  105. Tong L (2002) Viral proteases. Chem Rev 102:4609–4626PubMedCrossRefGoogle Scholar
  106. Tong L, Qian C, Massariol MJ, Bonneau PR, Cordingley MG, Lagace L (1996) A new serineprotease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383:272–275PubMedCrossRefGoogle Scholar
  107. Tong L, Qian C, Massariol MJ, Deziel R, Yoakim C, Lagace L (1998) Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nat Struct Biol 5:819–826PubMedCrossRefGoogle Scholar
  108. Turriziani O, Antonelli G, Jacobsen H, Mous J, Riva E, Pistello M, Dianzani F (1994) Identification of an amino acid substitution involved in the reduction of sensitivity of HIV-1 to an inhibitor of viral proteinase. Acta Virol 38:297–298PubMedGoogle Scholar
  109. Vacca JP, Dorsey BD, Schleif WA, Levin RB, McDaniel SL, Darke PL, Zugay J, Quintero JC, Blahy OM, Roth E et al (1994) L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Natl Acad Sci USA 91:4096–4100PubMedCrossRefGoogle Scholar
  110. Venkatraman S, Bogen SL, Arasappan A, Bennett F, Chen K, Jao E, Liu YT, Lovey R, Hendrata S, Huang Y, Pan W, Parekh T, Pinto P, Popov V, Pike R, Ruan S, Santhanam B, Vibulbhan B, Wu W, Yang W, Kong J, Liang X, Wong J, Liu R, Butkiewicz N, Chase R, Hart A, Agrawal S, Ingravallo P, Pichardo J, Kong R, Baroudy B, Malcolm B, Guo Z, Prongay A, Madison V, Broske L, Cui X, Cheng KC, Hsieh Y, Brisson JM, Prelusky D, Korfmacher W, White R, Bogdanowich-Knipp S, Pavlovsky A, Bradley P, Saksena AK, Ganguly A, Piwinski J, Girijaval-labhan V, Njoroge FG (2006) Discovery of (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1- oxobuty l]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (SCH 503034), a selective, potent, orally bioavailable hepatitis C virus NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J Med Chem 49:6074–6086PubMedCrossRefGoogle Scholar
  111. Welch AR, Woods AS, McNally LM, Cotter RJ, Gibson W (1991) A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc Natl Acad Sci USA 88:10792–10796PubMedCrossRefGoogle Scholar
  112. Wlodawer A, Erickson JW (1993) Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 62:543–585PubMedCrossRefGoogle Scholar
  113. Wu TD, Schiffer CA, Gonzales MJ, Taylor J, Kantor R, Chou S, Israelski D, Zolopa AR, Fessel WJ, Shafer RW (2003) Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments. J Virol 77:4836–4847PubMedCrossRefGoogle Scholar
  114. Wyles DL, Kaihara KA, Vaida F, Schooley RT (2007) Synergy of small molecular inhibitors of hepatitis C virus replication directed at multiple viral targets. J Virol 81:3005–3008PubMedCrossRefGoogle Scholar
  115. Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, Li J, Zhou Z, Ding Y, Zhao Q, Zhang XC, Liao M, Bartlam M, Rao Z (2008) Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol 82:2515–2527PubMedCrossRefGoogle Scholar
  116. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L, Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M, Hilgenfeld R, Rao Z (2003) The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci USA 100:13190–13195PubMedCrossRefGoogle Scholar
  117. Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, Zhao Q, Zhou Z, Pei D, Ziebuhr J, Hilgenfeld R, Yuen KY, Wong L, Gao G, Chen S, Chen Z, Ma D, Bartlam M, Rao Z (2005) Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3:e324PubMedCrossRefGoogle Scholar
  118. Yang S, Chen SJ, Hsu MF, Wu JD, Tseng CT, Liu YF, Chen HC, Kuo CW, Wu CS, Chang LW, Chen WC, Liao SY, Chang TY, Hung HH, Shr HL, Liu CY, Huang YA, Chang LY, Hsu JC, Peters CJ, Wang AH, Hsu MC (2006) Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J Med Chem 49:4971–4980PubMedCrossRefGoogle Scholar
  119. Yao N, Reichert P, Taremi SS, Prosise WW, Weber PC (1999) Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional proteasehelicase. Structure 7:1353–1363PubMedCrossRefGoogle Scholar
  120. Yin J, Niu C, Cherney MM, Zhang J, Huitema C, Eltis LD, Vederas JC, James MN (2007) A mechanistic view of enzyme inhibition and peptide hydrolysis in the active site of the SARS-CoV 3C-like peptidase. J Mol Biol 371:1060–1074PubMedCrossRefGoogle Scholar
  121. Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969PubMedCrossRefGoogle Scholar
  122. Zeuzem S, Hezode C, Ferenci P, Dusheiko GM, Pol S, Goeser T, Bronowicki J, Gharakhanian S, Devonish D, Kauffman R, Alam J, Pawlotsky J (2007) PROVE2: phase II study of VX950 (telaprevir) in combination with peginterferon ALFA2A with or without ribavirin in subjects with chronic hepatitis C, first interim analysis. AASLD, Abstract 80Google Scholar
  123. Zhang R, Durkin J, Windsor WT, McNemar C, Ramanathan L, Le HV (1997) Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. J Virol 71:6208–6213PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jeffrey Anderson
    • 1
  • Celia Schiffer
    • 1
  • Sook-Kyung Lee
    • 2
  • Ronald Swanstrom
    • 2
  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of MassachusettsWorcesterMA
  2. 2.UNC Center For AIDS ResearchUniversity of North Carolina at Chapel HillUSA

Personalised recommendations