Advertisement

Multi-modal VR Systems

  • Michael Fritschi
  • Hasan Esen
  • Martin Buss
  • Marc O. Ernst
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 45)

Summary

This chapter presents novel multi-modal and integrated systems developed in the laboratories of the Institute of Automatic Control Engineering, Technische Universität München. First, kinesthetic, tactile, visual and acoustic hardware used for multi-modal systems are introduced individually. Then the integration of the hardware into multi-modal VR systems and chosen applications are explained. The kinesthetic-tactile integrated systems are evaluated. The objective of the evaluations has been the study of the psychophysical correlation between the tactile and the kinesthetic portion of haptic information.

Keywords

Servo Motor Tactile Feedback Virtual Reality System Deformable Object Haptic Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Alterovitz, R., Goldberg, K., Okamura, A.: Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In: Proceedings of the International Conference on Robotics and Automation ICRA, Barcelona, Spain (2005)Google Scholar
  6. 6.
    Basdogan, C., Ho, C., Srinivasan, A.: Virtual environments for medical training: Graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Transactions on Mechatronics 6, 269–285 (2001)CrossRefGoogle Scholar
  7. 7.
    Buttolo, P., Oboe, R., Hannaford, B.: Architectures for shared haptic virtual environments. Computers and Graphics 21(4), 421–429 (1997)CrossRefGoogle Scholar
  8. 8.
    Cavusoglu, M.C., William, W., Tendick, F., Sastry, S.S.: Robotics for telesurgery: Second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications. In: 39th Allerton Conference on Communication, Control and Computing, Monticello, USA (2001)Google Scholar
  9. 9.
    Esen, H., Yano, K., Buss, M.: Interaction with virtual deformable objects for surgery simulation using a hyper-redundant haptic display. In: Proceedings of the EuroHaptic International Conference, Paris, France, pp. 519–522 (2006)Google Scholar
  10. 10.
    Fritschi, M., Drewing, K., Zopf, R., Ernst, M.O., Buss, M.: Construction and first evaluation of a newly developed tactile shear force display. In: Proceedings of the 4th International Conference EuroHaptics, Munich, Germany, pp. 508–511 (2004)Google Scholar
  11. 11.
    Drewing, K., Fritschi, M., Zopf, R., Ernst, M.O., Buss, M.: First evaluation of a novel tactile display exerting shear force via lateral displacement. ACM Transactions an Applied Perception 2(2), 118–131 (2005)CrossRefGoogle Scholar
  12. 12.
    de Gomes, S.J., Zachmann, G.: Integrating virtual reality for virtual prototyping. In: Proceedings of the ASME Design Engineering Technical Conference (1998) Google Scholar
  13. 13.
    Hasser, C.J., Daniels, M.W.: Tactile feedback with adaptive controller for a force-reflecting haptic display. part1: Design. In: Southern Biomedical Engineering Conference, pp. 526–529. IEEE, Los Alamitos (1996)CrossRefGoogle Scholar
  14. 14.
    Hasser, C.J., Daniels, M.W.: Tactile feedback with adaptive controller for a force-reflecting haptic display. part2: Improvements and evaluation. In: Southern Biomedical Engineering Conference, pp. 530–533. IEEE, Los Alamitos (1996)CrossRefGoogle Scholar
  15. 15.
    Hollerbach, J.M., Cohen, E., Thompson, E., Freier, W.B., Johnson, D.E., Nahvi, A., Nelson, D.D., Thompson II, T.V., Jacobsen, S.C.: Haptic interfacing for virtual prototyping of mechanical CAD designs. In: ASME Design for Manufacturing Symposium. CDROM proceedings (1997)Google Scholar
  16. 16.
    Ikei, Y.: TextureExplorer: A tactile and force display for virtual textures. In: Proceedings of the EuroHaptic International Conference (2002)Google Scholar
  17. 17.
    Ikei, Y., Wakamatsu, K., Fukuda, S.: Vibratory tactile display of image-based textures. Computer Graphics and Applications 17(6), 53–61 (1997)CrossRefGoogle Scholar
  18. 18.
    Keyson, D.V., Houtsma, A.J.M.: Directional sensitivity to a tactile point stimulus moving across the fingerpad. Perception & Psychophysics 57(5), 738–744 (1995)Google Scholar
  19. 19.
    Konyo, M., Akazawa, K., Tadokoro, S., Takamori, T.: Tactile feel display for virtual active touch. In: Int Conf. on Intelligent Robotics and Systems, pp. 3744–3750 (2003)Google Scholar
  20. 20.
    Konyo, M., Tadokoro, S., Takamori, T.: Artificial tactile feel display using soft gel actuators. In: Int. Conf. on Robotics & Automation, pp. 3416–3421 (2000)Google Scholar
  21. 21.
    Kron, A.: Beiträge zur bimauellen und mehrfingerigen haptischen Informationsvermittlung in Telepräsenzsystemen. PhD thesis, Institute of Automatic Control Engineering, Technische Universität München (2004)Google Scholar
  22. 22.
    Kuchenbecker, K.J., Provancher, W.R., Niemeyer, G., Cutkosky, M.R.: Haptic display of contact location. In: Proceedings of the EuroHaptic International Conference, pp. 40–47 (2004)Google Scholar
  23. 23.
    Kühnapfel, U., Cakmak, H.K., Maass, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computer & Graphics (24), 671–682 (2000)Google Scholar
  24. 24.
    Kühnapfel, U., Cakmak, H.K., Maass, H.: Virtual endoscopic surgery training (vest): Development of surgical interactions and virtual patient models for laparoscopic applications. In: Medicine Meets Virtual Reality (MMVR) 11, Workshop on Surgical Simulators, Newport-Beach, California, USA, pp. 113–124 (2003)Google Scholar
  25. 25.
    Kühnapfel, U.: Grafische Realzeitunterstützung für Fernhandhabungsvorgänge in komplexen Arbeitsumgebungen im Rahmen eines Systems zur Steuerung, Simulation, Off-Line Programmierung. PhD thesis, University Karlsruhe (1991)Google Scholar
  26. 26.
    Lee, J.-H., Ahn, I.-S., Park, J.-O.: Design and implementation of tactile feedback device using electromagnetic type. In: Int. Conf. on Intelligent Robots and Systems, pp. 1549–1554 (1999)Google Scholar
  27. 27.
    Li, M., Liu, Y.H.: Modeling interactions of pulpal tissue with deformable tools in endodontic simulation. In: Proceedings of the International Conference on Robotics and Automation ICRA, Barcelona, Spain (2005)Google Scholar
  28. 28.
    Papadopoulos, E., Tsamis, A., Vlachos, K.: A real-time graphics environment for a urological operation training simulator. In: IEEE International Conference on Robotics and Automation, ICRA, New Orleans, USA (2004)Google Scholar
  29. 29.
    Pasquero, J., Hayward, V.: iSTReSS: A practical tactile display system with one millimeter spatial resolution and 700 Hz refresh rate. In: Eurohaptics, pp. 94–110 (2006)Google Scholar
  30. 30.
    Salada, M., Colgate, J.E., Lee, M.V., Vishton, P.: Fingertip haptics: A novel direction in haptic displays. In: Proceedings of the 8th Mechatronics Forum, Int. Conference. Univ. of Twente, Enschede, Netherlands, pp. 1211–1220 (2002)Google Scholar
  31. 31.
    Salada, M., Colgate, J.E., Lee, M.V., Vishton, P.: Validating a novel approach to rendering fingertip contact sensations. In: Proceedings of the EuroHaptic International Conference (2002)Google Scholar
  32. 32.
    Salada, M., Colgate, J.E., Vishton, P., Frankel, E.: Two experiments on the perception of slip at the fingertip. In: Proceedings of the EuroHaptic International Conference (2004)Google Scholar
  33. 33.
    Shinohara, M., Shimizu, Y., Mochizuki, A.: Three-dimensional tactile display for the blind. Transactions on Rehabilitation Engineering 6(3), 249–256 (1998)CrossRefGoogle Scholar
  34. 34.
    Summers, I.R., Chanter, C.M., Southall, A.L., Brady, A.C.: Results from a tactile array on the fingertip. In: Proceedings of the EuroHaptic International Conference (2001)Google Scholar
  35. 35.
    Tendick, F., Downes, M., Goktekin, T., Cavusoglu, M.C., Feygin, D., Wu, X., Eyal, R., Hogarty, M., Way, L.W.: A virtual environment testbed for training laparoscopic surgical skills. Presence 9(3), 236–255 (2000)CrossRefGoogle Scholar
  36. 36.
    Ueberle, M.: Design, Control, and Evaluation of a Family of Kinesthetic Haptic Interfaces. PhD thesis, Lehrstuhl für Steuerungs- und Regelungstechnik, Technische Universität München (2006)Google Scholar
  37. 37.
    Ueberle, M., Mock, N., Buss, M.: ViSHaRD 10, a novel hyper-redundant haptic interface. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 58–65 (2004)Google Scholar
  38. 38.
    Ueberle, M., Mock, N., Buss, M.: Design, control, and evaluation of a hyper-redundant haptic device. In: Aracil, R., Balaguer, C., Buss, M., Ferre, M., Melchiorri, C. (eds.) Advances in Telerobotics: Human Interfaces, Control, and Applications. STAR series, Springer, Heidelberg (2007)Google Scholar
  39. 39.
    Ueberle, M., Mock, N., Peer, A., Michas, C., Buss, M.: Design and control: Concepts of a hyper redundant haptic interface for interaction with virtual environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Workshop on Touch and Haptics, Sendai, Japan, pp. 1–14 (2004)Google Scholar
  40. 40.
    Van den Bergen, G.: Collision Detection in Interactive 3D Environments. Elsevier, Inc, Amsterdam (2004)Google Scholar
  41. 41.
    Vitello, M.P., Ernst, M.O., Fritschi, M.: An instance of tactile suppression: Active exploration impairs tactile sensitivity for the direction of lateral movement. In: Proceedings of the EuroHaptic International Conference, Paris, France, pp. 351–355 (2006)Google Scholar
  42. 42.
    Webster, R.J., Murphy, T.E., Verner, L.N., Okamura, A.M.: A novel two-dimensional tactile slip display: Design, kinematics and perceptual experiments. ACM Transactions an Applied Perception 2(2), 150–165 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Fritschi
    • 1
    • 2
  • Hasan Esen
    • 1
  • Martin Buss
    • 1
  • Marc O. Ernst
    • 2
  1. 1.Institute of Automatic Control EngineeringTechnische Universität München 
  2. 2.Max Planck Institute for Biological Cybernetics TübingenGermany

Personalised recommendations