2-DOF fMRI-Compatible Haptic Interface for Bimanual Motor Tasks with Grip/Load Force Measurement

  • Roger Gassert
  • Dominique Chapuis
  • Nick Roach
  • Alan Wing
  • Hannes Bleuler
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 45)


Robotic systems are invaluable tools for the investigation of sensorimotor control of action, as they can influence motion in a controlled manner and precisely record timing, trajectory and interaction forces. In order to better understand the dynamics of human action, it is also necessary to examine the related brain function. Functional magnetic resonance imaging (fMRI) is a valuable tool to measure task related changes in brain activation and combine these two approaches, but poses severe constraints on the development of robotic devices. Here, we present a two- degrees-of-freedom haptic interface for bimanual motor tasks with grip and load force measurement, which adheres to the stringent compatibility and safety requirements of fMRI. The robotic technology is based on earlier developments, which evolved through material compatibility tests and developments made within Touch-HapSys. The highly flexible hydrostatic transmission allows placing the two linear actuators with a stroke of 30 cm in various manners for interaction with single-handed or bimanual movements. As an extension, they can be fixed to an adjustable table to actuate an XY-stage for interaction with planar movements over a workspace of 15×15 cm 2. This system opens up new ways of exploring the nature of amplitude (force and position) and timing constraints in the sensorimotor control of action in healthy subjects and neurological patients.


Electric Discharge Machine Elastic Body Grip Force Force Sensor Linear Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gomi, H., Kawato, M.: Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol. Cybern. 76, 163–171 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Burdet, E., Osu, R., Franklin, D., Milner, T., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001)CrossRefGoogle Scholar
  3. 3.
    Ernst, M., Banks, M.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)CrossRefGoogle Scholar
  4. 4.
    de Vlugt, E., Schouten, A., van der Helm, C., Teerhuis, P., Brouwn, G.: A force-controlled planar haptic device for movement control analysis of the human arm. Journal of Neuroscience Methods 129, 151–168 (1993)Google Scholar
  5. 5.
    Flanagan, J.R., Wing, A.M.: The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J. Neurosci. 17(4), 1519–1528 (1997)Google Scholar
  6. 6.
    Burdet, E., Gassert, R., Gowrishankar, G., Chapuis, D., Bleuler, H.: fMRI compatible haptic interfaces to investigate human motor control. In: Ang, M., Khatib, O. (eds.) Springer Tracts in Advanced Robotics. Human-Centered Robotics, vol. 21, ch. II, pp. 25–34. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Gassert, R., Yamamoto, A., Chapuis, D., Dovat, L., Bleuler, H., Burdet, E.: Actuation methods for applications in MR environments. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 29B(4), 191–209 (2006)CrossRefGoogle Scholar
  8. 8.
    Gassert, R., Moser, R., Burdet, E., Bleuler, H.: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Transactions on Mechatronics 11(2), 216–224 (2006)CrossRefGoogle Scholar
  9. 9.
    Chapuis, D., Gassert, R., Hartwig, V., Vanello, N., Bicchi, A.: Prototype fMRI compatible actuators. Deliverable D4.11 Touch-HapSys (2004),
  10. 10.
    Gassert, R.: MR-Compatible Robotics to Investigate Human Motor Control. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (2006)Google Scholar
  11. 11.
    Shinsei Corporation Inc. (2006),
  12. 12.
    Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., Takakura, K.: Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. Image Guid Surg 1(4), 242–248 (1995)CrossRefGoogle Scholar
  13. 13.
    Chinzei, K., Hata, N., Jolesz, F., Kikinis, R.: Surgical assist robot for the active navigation in the intraoperative MRI: Hardware design issues. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 727–732 (2000)Google Scholar
  14. 14.
    Tajima, F., Kishi, K., Nishizawa, K., Kan, K., Ishii, H., Sudo, K., Fujie, M., Dohi, T., Takamoto, S.: A prototype master-slave system consisting of two MR-compatible manipulators with interchangeable surgical tools. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 2505–2510 (2004)Google Scholar
  15. 15.
    Larson, B., Erdman, A., Tsekos, N., Yacoug, E., Tsekos, P., Koutlas, I.: Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. Journal of Biomechanical Engineering 126(4), 458–465 (2004)CrossRefGoogle Scholar
  16. 16.
    Gassert, R., Vanello, N., Chapuis, D., Hartwig, V., Scilingo, E., Bicchi, A., Landini, L., Burdet, E., Bleuler, H.: Active mechatronic interface for haptic perception studies with functional magnetic resonance imaging: Compatibility and design criteria. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 3832–3837 (2006)Google Scholar
  17. 17.
    Gassert, R., Dovat, L., Lambercy, O., Ruffieux, Y., Chapuis, D., Ganesh, G., Burdet, E., Bleuler, H.: A 2-DOF fMRI compatible haptic interface to interact with arm movements. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 3825–3831 (2006)Google Scholar
  18. 18.
    Henein, S.: Conception des structures articulées à guidages flexibles de haute précision. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (2000)Google Scholar
  19. 19.
    Chapuis, D., Gassert, R., Sache, L., Burdet, E., Bleuler, H.: Design of a simple MRI/fMRI compatible force/torque sensor. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2593–2599 (2004)Google Scholar
  20. 20.
    Tada, M., Sasaki, S., Ogasawara, T.: Development of an optical 2-axis force sensor usable in MRI environments. Proc. IEEE Sensors 2, 984–989 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roger Gassert
    • 1
  • Dominique Chapuis
    • 1
  • Nick Roach
    • 2
  • Alan Wing
    • 2
  • Hannes Bleuler
    • 1
  1. 1.Ecole Polytechnique Fédérale de Lausanne (EPFL) Laboratoire de Systèmes Robotiques Switzerland
  2. 2.Behavioral Brain Sciences Centre, School of PsychologyUniversity of BirminghamUK

Personalised recommendations