CBR Based Engine for Business Internal Control

  • M. L. Borrajo
  • E. S. Corchado
  • M. A. Pellicer
  • J. M. Corchado
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 230)


The complexity of current organization systems and the increase in importance of the realization of internal controls in firms makes the construction of models that automate and facilitate the work of the auditors crucial. A tool for the decision support process has been developed based on a multi-cbr system that incorporates two case-based reasoning systems and automates the business control process. The objective of the system is to facilitate the process of internal audit in small and medium firms. The multi-cbr system analyses the data that characterises each one of the activities carried out by the firm, then determines the state of each activity, calculates the associated risk, detects the erroneous processes, and generates recommendations to improve these processes. Therefore, the system is a useful tool for the internal auditor in order to make decisions based on the obtained risk. Each one of the case-based reasoning systems that integrates the multi-agent system uses a different problem solving method in each step of the reasoning cycle: a Maximum Likelihood Hebbian learning-based method that automates the organization of cases and the retrieval phase, an Radial Based Function neural network and a multi-criterion discreet method during the reuse phase and a rule based system for recommendation generation. The multi-cbr system has been tested in 14 small and medium size companies during the last 26 months in the textile sector, which are located in the northwest of Spain. The achieved results have been very satisfactory


Radial Base Function Neural Network Independent Component Analysis Case Base Reasoning Internal Auditor Case Base Reasoning System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AICOM 7(1) (1994)Google Scholar
  2. American Institute of Certified Public Accountants (AICPA), Statements on Auditing Standards No. 78 (SAS No. 78). Consideraciones de la Estructura del Control Interno en una Auditoría de Estados Financieros (Amendment to SAS núm. 55), The Auditing Standards Executive Committee, New York (1996)Google Scholar
  3. Barba-Romero, S., Pomeral, J.: Decisiones Multicriterio. Fundamentos teóricos y utilización práctica. Colección de Economía. Servicio de publicaciones Universidad de Alcalá (1997)Google Scholar
  4. Borrajo, L.: Sistema híbrido inteligente aplicado a la auditoría de los sistemas internos. Ph.D. thesis. Universidade de Vigo (Spain) (2003) ISBN: 84-8158-274-3. Google Scholar
  5. Corchado, E., MacDonald, D., Fyfe, C.: Optimal Projections of High Dimensional Data. In: ICDM 2002 the 2002 IEEE International Conference on Data Mining, Maebashi TERRSA, Maebashi City, Japan, IEEE Computer Society, Los Alamitos (2002)Google Scholar
  6. Corchado, J.M., Borrajo, L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic System for Business Internal Control. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, pp. 302–9743. Springer, Heidelberg (2004)Google Scholar
  7. Corchado, J.M., Díaz, F., Borrajo, L., Fdez-Riverola, F.: Redes Neuronales Artificiales: Un enfoque práctico. Departamento de publicaciones de la Universidad de Vigo (2000)Google Scholar
  8. Denna, E.L., Hansen, J.V., Meservy, R.: Development and application of expert systems in audit services. Transactions on Knowledge and Data Engineering (1991)Google Scholar
  9. Diaconis, P., Freedman, D.: Asymptotics of Graphical Projections. The Annals of Statistics 12(3), 793–815 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  10. Fdez-Riverola, F., Corchado, J.M.: FSfRT: Forecasting System for Red Tides. Applied Intelligence. Special Issue on Soft Computing in Case-Based Reasoning 21(3), 251–264 (2004)Google Scholar
  11. Fritzke, B.: Fast Learning with Incremental RBF Networks. Neural Processing Letters 1(1), 2–5 (1994)CrossRefGoogle Scholar
  12. Fyfe, C., Baddeley, R.: Non-linear data structure extraction using simple Hebbian networks. Biological Cybernetics 72(6), 533–541 (1995)CrossRefzbMATHGoogle Scholar
  13. Fyfe, C., Corchado, E.: Maximum Likelihood Hebbian Rules. In: 10th European Symposium on Artificial Neural Networks, ESANN 2002, Bruges, April 24-25-26 (2002a)Google Scholar
  14. Fyfe, C., Corchado, E.: A New Neural Implementation of Exploratory Projection Pursuit. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. Fyfe, C., MacDonald, D.: ε-Insensitive Hebbian learning. Neuro Computing (2001)Google Scholar
  16. Hunt, J., Miles, R.: Hybrid case-based reasoning. The Knowledge Engineering Review 9(4), 383–397 (1994)Google Scholar
  17. Hyvärinen, A.: Complexity Pursuit: Separating interesting components from time series. Neural Computation 13, 883–898 (2001)CrossRefzbMATHGoogle Scholar
  18. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2002)Google Scholar
  19. Karhunen, J., Joutsensalo, J.: Representation and Separation of Signals Using Non-linear PCA Type Learning. Neural Networks 7, 113–127 (1994)CrossRefGoogle Scholar
  20. Kashyap, R.L., Blaydon, C.C., Fu, K.S.: Stochastic Approximation. In: Mendel, J.M. (ed.) A Prelude to Neural Networks: Adaptive and Learning Systems. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  21. Kolodner, J.: Case-Based Reasoning, San Mateo, CA. Morgan Kaufmann, San Francisco (1993)Google Scholar
  22. Lai, P.L., Charles, D., Fyfe, C.: Seeking Independence using Biologically Inspired Artificial Neural Networks, in Developments. In: Girolami, M.A. (ed.) Artificial Neural Network Theory: Independent Component Analysis and Blind Source Separation. Springer, Heidelberg (2000)Google Scholar
  23. Lenz, M., Bartsch-Spörl, B., Burkhard, D., Wees, S. (eds.): Case-based Reasoning Technology: From Fundations to Applications. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)Google Scholar
  24. Mas, J., Ramió, C.: La Auditoría Operativa en la Práctica. Ed. Marcombo, Barcelona (1997)Google Scholar
  25. Medsker, L.R.: Hybrid Intelligent Systems. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  26. Messier, W.F., Hansen, J.V.: Inducing rules for expert systems development: An example using default and bankruptcy data. Management Science 34(12), 1403–1415 (1988)Google Scholar
  27. Oja, E.: Neural Networks, Principal Components and Subspaces. International Journal of Neural Systems 1, 61–68 (1989)CrossRefMathSciNetGoogle Scholar
  28. Oja, E., Ogawa, H., Wangviwattana, J.: Principal Components Analysis by Homogeneous Neural Networks, part 1, The Weighted Subspace Criterion. IEICE Transaction on Information and Systems, E75D, 366–375 (1992)Google Scholar
  29. Riesbeck, C.K., Schank, R.C.: Inside case-based reasoning. Lawrence Erlbaum Associates, Hillsdale, NJ (1989)Google Scholar
  30. Sánchez, A.: Los Sistemas Expertos en la Contabilidad. Biblioteca Electrónica de Contabilidad 1(2) (1995)Google Scholar
  31. Smola, A.J., Scholkopf, B.: A Tutorial on Support Vector Regression. Technical Report NC2-TR-1998-030, NeuroCOLT2 Technical Report Series (1998)Google Scholar
  32. Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Francisco (1997)zbMATHGoogle Scholar
  33. Watson, I., Marir, F.: Case-Based Reasoning: A Review. The Knowledge Engineering Review 9(4), 355–381 (1994)CrossRefGoogle Scholar
  34. Xu, L.: Least Mean Square Error Reconstruction for Self-Organizing Nets. Neural Networks 6, 627–648 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. L. Borrajo
    • 1
  • E. S. Corchado
    • 3
  • M. A. Pellicer
    • 3
  • J. M. Corchado
    • 2
  1. 1.Dept. InformáticaUniversity of Vigo, Escuela Superior de Ingeniería Informática, Edificio PolitécnicoOurenseSpain
  2. 2.Dept. de Ingeniería CivilUniversity of Burgos, Esc. Politécnica Superior, Edificio CBurgosSpain
  3. 3.Dept. de Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations