Gradient Boosting GARCH and Neural Networks for Time Series Prediction

  • José M. Matías
  • Manuel Febrero
  • Wenceslao González-Manteiga
  • Juan C. Reboredo
Part of the Studies in Computational Intelligence book series (SCI, volume 126)


This work develops and evaluates new algorithms based on neural networks and boosting techniques, designed to model and predict heteroskedastic time series. The main novel elements of these new algorithms are as follows: a) in regard to neural networks, the simultaneous estimation of conditional mean and volatility through the likelihood maximization; b) in regard to boosting, its simultaneous application to trend and volatility components of the likelihood, and the use of likelihood-based models (e.g. GARCH) as the base hypothesis rather than gradient fitting techniques using least squares. The behavior of the proposed algorithms is evaluated over simulated data, resulting in frequent and significant improvements in relation to the ARMA-GARCH models.


gradient boosting GARCH ARMA neural networks time series heteroskedasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audrino F, Bühlmann P (2002) Volatility estimation with functional gradient descent for very high dimensional financial time series. J Comp Finance 6:65–89Google Scholar
  2. 2.
    Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econometrics 31:27–37CrossRefMathSciNetGoogle Scholar
  3. 3.
    Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  4. 4.
    Engle RF (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fan J, Yao Q (2003) Nonlinear time series: nonparametric and parametric methods. Springer, Berlin/HeidelbergzbMATHCrossRefGoogle Scholar
  6. 6.
    Foresee FD, Hagan T (1997) Gauss-Newton approximation to Bayesian regularization. In: Proc IEEE Int Joint Conf Neural Networks, Houston, TX, USA. IEEE, Piscataway, pp 1930–1935Google Scholar
  7. 7.
    Friedman J (2001) Greedy function approximation: a gradient boosting machine. The Annals of Stat 39:1189-1232CrossRefGoogle Scholar
  8. 8.
    Granger CWJ, Newbold P (1986) Forecasting economic time series. Academic Press, LondonzbMATHGoogle Scholar
  9. 9.
    Granger CWJ, Teräsvirta T (1993) Modelling nonlinear economic relationships. Oxford University Press, OxfordzbMATHGoogle Scholar
  10. 10.
    Medeiros MC, Teräsvirta T, Rech G (2002) Building neural networks models for time series: a statistical approach. Tech Report 461, Stockholm School of Economics, StockholmGoogle Scholar
  11. 11.
    Miranda FG, Burgess N (1997) Modelling market volatilities: the neural network perspective. The European J Finance 3:137–157CrossRefGoogle Scholar
  12. 12.
    Priestley MB (1981) Spectral analysis and time series. Academic Press, LondonzbMATHGoogle Scholar
  13. 13.
    Refenes APN, Burgess AN, Bentz Y (1997) Neural networks in financial engineering: a study in methodology. IEEE Trans Neural Networks 8:1222–1267CrossRefGoogle Scholar
  14. 14.
    Schapire RE (1990) The strength of weak learnability. Mach Learn 5:197–227Google Scholar
  15. 15.
    Schittenkopf C, Dorffner G, Dockner EJ (2000) Forecasting time-dependent conditional densities: a seminonparametric neural network approach. J Forecasting 19:355–374CrossRefGoogle Scholar
  16. 16.
    Tino P, Schittenkopf C, Dorffner G (2001) Financial volatility trading using recurrent neural networks. IEEE Trans Neural Networks 12:865–874CrossRefGoogle Scholar
  17. 17.
    Tsay RS (2001) Analysis of financial time series. John Wiley and Sons, HobokenGoogle Scholar
  18. 18.
    Weigend AS, Gershenfeld NA (1993) Time series prediction: forecasting the future and understanding the past. Perseus Books, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • José M. Matías
    • 1
  • Manuel Febrero
    • 2
  • Wenceslao González-Manteiga
    • 2
  • Juan C. Reboredo
    • 3
  1. 1.Dpt. of StatisticsUniversity of VigoSpain
  2. 2.Dpt. of StatisticsUniversity of Santiago de CompostelaChile
  3. 3.Dpt. of Economic AnalysisUniversity of Santiago de CompostelaChile

Personalised recommendations