Formalizing a Constraint Deductive Database Language Based on Hereditary Harrop Formulas with Negation

  • Susana Nieva
  • Jaime Sánchez-Hernández
  • Fernando Sáenz-Pérez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4989)


In this paper, we present an extension of the scheme HH(\(\mathcal{C}\)) (Hereditary Harrop formulas with Constraints) with a suitable formulation of negation in order to obtain a constraint deductive database query language. In addition to constraints, our proposal includes logical connectives (implication and quantifiers) for defining databases and queries, which altogether are unavailable in current database query languages.

We define a proof theoretic semantic framework based on a sequent calculus, that allows to represent the meaning of a database query by means of a derived constraint answer in the sense of CLP. We also introduce an appropriate notion of stratification, which provides a starting point for suitable operational semantics dealing with recursion and negation. We formalize a fixed point semantics for stratifiable databases, whose fixpoint operator is applied stratum by stratum. This semantics is proved to be sound and complete with respect to derivability in the sequent calculus, and it provides the required support for actual implementations, as the prototype we have developed already and introduce in this paper.


Logic Program Dependency Graph Constraint System Relational Algebra Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Apt, K., Bol, R.: Logic Programming and Negation: A Survey. Journal of Logic Programming 19&20, 9–71 (1994)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Benedikt, M., Libkin, L.: Safe constraint queries. In: PODS 1998: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 99–108. ACM Press, New York (1998)CrossRefGoogle Scholar
  4. 4.
    Bonatti, S.B.P.A., Gelfond, M.: Towards an integration of answer set and constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 52–66. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Bonner, A.J., McCarty, L.T., Vadaparty, K.: Expressing Database Queries with Intuitionistic Logic. In: Lusk, E.L., Overbeek, R.A. (eds.) Proceedings of the North American Conference on Logic Programming, pp. 831–850 (1989)Google Scholar
  6. 6.
    Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming. In: Artëmov, S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them (1), pp. 615–664. College Publications (2005)Google Scholar
  7. 7.
    García-Díaz, M., Nieva, S.: Providing Declarative Semantics for HH Extended Constraint Logic Programs. In: Proceedings of the 6th ACM SIGPLAN Int. Conf. on PPDP, pp. 55–66 (2004)Google Scholar
  8. 8.
    Hofstedt, P., Pepper, P.: Integration of declarative and constraint programming. Theory Pract. Log. Program. 7(1-2), 93–121 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jaffar, J., Lassez, J.-L.: Constraint Logic Programming. In: 14th ACM Symp. on Principles of Programming Languages (POPL 1987), Munich, Germany, January 1987, pp. 111–119. ACM Press, New York (1987)CrossRefGoogle Scholar
  10. 10.
    Leach, J., Nieva, S., Rodríguez-Artalejo, M.: Constraint Logic Programming with Hereditary Harrop Formulas. TPLP 1(4), 409–445 (2001)zbMATHGoogle Scholar
  11. 11.
    Lipton, J., Nieva, S.: Higher-order logic programming languages with constraints: A semantics. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 272–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Mellarkod, V.S.: Integrating ASP and CLP Systems: Computing Answer Sets from Partially Ground Programs. PhD thesis, Texas Tech University (2007)Google Scholar
  13. 13.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform Proofs as a Foundation for Logic Programming. Annals of Pure and Applied Logic 51, 125–157 (1991)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nieva, S., Sáenz-Pérez, F., Sánchez, J.: Towards a constraint deductive database language based on hereditary harrop formulas. In: Lucio, P., Orejas, F. (eds.) Sextas Jornadas de Programación y Lenguajes, PROLE, pp. 171–182 (2006)Google Scholar
  15. 15.
    Pustejovsky, J., Revesz, P.Z. (eds.): Proc. 13th International Symposium on Temporal Representation and Reasoning. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  16. 16.
    Revesz, P.Z.: Datalog and Constraints. In: Kuper, G., Libkin, L., Paredaens, J. (eds.) Constraint Databases, ch. 7, pp. 151–174. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Revesz, P.Z.: Introduction to Constraint Databases. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Scholl, P.R.M., Voisard, A.: Spatial databases with application to GIS. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  19. 19.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., Zicari, R.: Advanced Database Systems. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Susana Nieva
    • 1
  • Jaime Sánchez-Hernández
    • 1
  • Fernando Sáenz-Pérez
    • 2
  1. 1.Dept. Sistemas Informáticos y ComputaciónUCMSpain
  2. 2.Dept. Ingeniería del Software e Inteligencia ArtificialUCMSpain

Personalised recommendations