Abstract

Despite their popularity, lattice reduction algorithms remain mysterious cryptanalytical tools. Though it has been widely reported that they behave better than their proved worst-case theoretical bounds, no precise assessment has ever been given. Such an assessment would be very helpful to predict the behaviour of lattice-based attacks, as well as to select keysizes for lattice-based cryptosystems. The goal of this paper is to provide such an assessment, based on extensive experiments performed with the NTL library. The experiments suggest several conjectures on the worst case and the actual behaviour of lattice reduction algorithms. We believe the assessment might also help to design new reduction algorithms overcoming the limitations of current algorithms.

Keywords

Lattice Reduction BKZ LLL DEEP Insertions Lattice-based cryptosystems 

References

  1. 1.
    Ajtai, M.: Generating random lattices according to the invariant distribution (Draft of March 2006)Google Scholar
  2. 2.
    Ajtai, M.: Generating hard instances of lattice problems. In: Proc. of 28th STOC, pp. 99–108. ACM Press, New York (1996)Google Scholar
  3. 3.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proc. of 29th STOC, pp. 284–293. ACM Press, New York (1997)Google Scholar
  4. 4.
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proc. 33rd STOC, pp. 601–610. ACM Press, New York (2001)Google Scholar
  5. 5.
    Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Cohn, H., Elkies, N.: New upper bounds on sphere packings. I. Ann. of Math (2) 157(2), 689–714 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. of Cryptology 10(4), 233–260 (1997); Revised version of two articles from Eurocrypt 1996CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Gama, N., Howgrave-Graham, N., Koy, H., Nguyen, P.Q.: Rankin’s constant and blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 112–130. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gama, N., Howgrave-Graham, N., Nguyen, P.Q.: Symplectic Lattice Reduction and NTRU. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 233–253. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: STOC 2008: Proc. of the 40th Annual ACM Symposium on Theory of Computing, ACM Press, New York (2008)Google Scholar
  11. 11.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007) (to appear in STOC 2008), http://eprint.iacr.org/
  12. 12.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Math 15(2), 165–189 (2003)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Han, D., Kim, M.-H., Yeom, Y.: Cryptanalysis of the Paeng-Jung-Ha cryptosystem from PKC 2003. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 107–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Hoffstein, J., Pipher, J., Silverman, J.: NTRU: a ring based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Cryptogr. 23(3), 283–290 (2001)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proc. of 15th STOC, pp. 193–206. ACM Press, New York (1983)Google Scholar
  18. 18.
    Klein, P.: Finding the closest lattice vector when it’s unusually close. In: Proc. of SODA 2000, ACM–SIAM (2000)Google Scholar
  19. 19.
    Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. In: Journal of the Association for Computing Machinery (January 1985)Google Scholar
  20. 20.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Ann. 261, 513–534 (1982)Google Scholar
  21. 21.
    Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 50. SIAM Publications, Philadelphia (1986)Google Scholar
  22. 22.
    May, A., Silverman, J.H.: Dimension reduction methods for convolution modular lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Micciancio, D., Goldwasser, S.: Complexity of lattice problems: A cryptographic perspective. In: The Kluwer International Series in Engineering and Computer Science, vol. 671, Kluwer Academic Publishers, Boston (2002)Google Scholar
  24. 24.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007) (electronic)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Nguyen, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto 1997. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15(3), 151–176 (2002)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Nguyen, P.Q., Stehlé, D.: Floating-Point LLL Revisited. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Nguyen, P.Q., Stehlé, D.: LLL on the average. In: ANTS, pp. 238–256 (2006)Google Scholar
  29. 29.
    Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Nguyen, P.Q., Stern, J.: Adapting density attacks to low-weight knapsacks. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 41–58. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. of Mathematical Cryptology (to appear, 2008)Google Scholar
  32. 32.
    Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Proc. of Cryptology and Computational Number Theory, Proc. of Symposia in Applied Mathematics, vol. 42, pp. 75–88. American Mathematical Society (1989)Google Scholar
  33. 33.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. Cryptology ePrint Archive, Report 2007/279 (2007) to appear in STOC 2008 http://eprint.iacr.org/
  34. 34.
    Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942 (2004)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM Press, New York (2005)CrossRefGoogle Scholar
  36. 36.
    Schnorr, C.-P.: A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science 53, 201–224 (1987)CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–199 (1994)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Schnorr, C.-P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)Google Scholar
  39. 39.
    Shoup, V.: Number Theory C++ Library (NTL) version 5.4.1, http://www.shoup.net/ntl/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicolas Gama
    • 1
  • Phong Q. Nguyen
    • 1
  1. 1.École normale supérieure/CNRS/INRIAParisFrance

Personalised recommendations