Advertisement

Strongly Multiplicative Ramp Schemes from High Degree Rational Points on Curves

  • Hao Chen
  • Ronald Cramer
  • Robbert de Haan
  • Ignacio Cascudo Pueyo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4965)

Abstract

In this work we introduce a novel paradigm for the construction of ramp schemes with strong multiplication that allows the secret to be chosen in an extension field, whereas the shares lie in a base field. When applied to the setting of Shamir’s scheme, for example, this leads to a ramp scheme with strong multiplication from which protocols can be constructed for atomic secure multiplication with communication equal to a linear number of field elements in the size of the network.

This is also achieved by the results from Cramer, Damgaard and de Haan from EUROCRYPT 2007. However, our new ramp scheme has an improved privacy bound that is essentially optimal and leads to a significant mathematical simplification of the earlier results on atomic secure multiplication.

As a result, by considering high degree rational points on algebraic curves, this can now be generalized to algebraic geometric ramp schemes with strong multiplication over a constant size field, which in turn leads to low communication atomic secure multiplication where the base field can now be taken constant, as opposed to earlier work.

References

  1. 1.
    Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1985. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computation over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 516–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Damgaard, I., de Haan, R.: Atomic secure multi-party multiplication with low communication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 329–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Damgaard, I., Maurer, U.: General secure multi-party computation from any linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Daza, V., Gracia, I., Jiménez Urroz, J., Leander, G., Martí-Farré, J., Padró, C.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 327–343. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Franklin, M., Yung, M.: Communication complexity of secure computation. In: Proceedings of STOC 1992, pp. 699–710. ACM Press, New York (1992)Google Scholar
  8. 8.
    García, A., Stichtenoth, H.: On the asymptotic behavior of some towers of function fields over finite fields. J. Number Theory 61, 248–273 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of STOC 2007, pp. 21–30. ACM Press, New York (2007)Google Scholar
  10. 10.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Tsfasman, M.A., Vlǎduţ, S.G.: Algebraic-Geometric Codes. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hao Chen
    • 1
  • Ronald Cramer
    • 2
  • Robbert de Haan
    • 3
  • Ignacio Cascudo Pueyo
    • 4
  1. 1.Software Engineering InstituteEast China Normal UniversityShanghaiChina
  2. 2.CWI, Amsterdam & Mathematical InstituteLeiden UniversityThe Netherlands
  3. 3.CWI, Amsterdam The Netherlands
  4. 4.Department of MathematicsUniversity of OviedoSpain

Personalised recommendations