Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle

  • Jens Groth
  • Yuval Ishai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4965)

Abstract

A shuffle of a set of ciphertexts is a new set of ciphertexts with the same plaintexts in permuted order. Shuffles of homomorphic encryptions are a key component in mix-nets, which in turn are used in protocols for anonymization and voting. Since the plaintexts are encrypted it is not directly verifiable whether a shuffle is correct, and it is often necessary to prove the correctness of a shuffle using a zero-knowledge proof or argument.

In previous zero-knowledge shuffle arguments from the literature the communication complexity grows linearly with the number of ciphertexts in the shuffle. We suggest the first practical shuffle argument with sub-linear communication complexity. Our result stems from combining previous work on shuffle arguments with ideas taken from probabilistically checkable proofs.

Keywords

Shuffle zero-knowledge argument sub-linear communication homomorphic encryption mix-net 

References

  1. 1.
    Abe, M.: Universally verifiable mix-net with verification work independent of the number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 437–447. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)Google Scholar
  7. 7.
    Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs verifiable in polylogarithmic time. In: IEEE Conference on Computational Complexity, pp. 120–134 (2005)Google Scholar
  8. 8.
    Brassard, G., Chaum, D., Crèpeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dinur, I.: The PCP theorem by gap amplification. Journal of the ACM 54(3) (2007)Google Scholar
  13. 13.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1986)Google Scholar
  15. 15.
    Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 88-A(1), 172–188 (2005)Google Scholar
  16. 16.
    Furukawa, J., Miyauchi, H., Mori, K., Obana, S., Sako, K.: An implementation of a universally verifiable electronic voting scheme based on shuffling. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 16–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. Journal of Cryptology 19(2), 169–209 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS, pp. 102–113 (2003), http://eprint.iacr.org/2003/034
  20. 20.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proofs. SIAM Journal of Computing 18(1), 186–208 (1989)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002), http://eprint.iacr.org/2005/246 CrossRefGoogle Scholar
  22. 22.
    Groth, J.: Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3, BRICS, PhD thesis. pp. xii+119 (2004)Google Scholar
  23. 23.
    Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle (2008), http://www.brics.dk/~jg/PCPShuffle.pdf
  24. 24.
    Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: CCC, pp. 278–291 (2007)Google Scholar
  26. 26.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC, pp. 723–732 (1992)Google Scholar
  27. 27.
    Lim, C.H.: Efficient multi-exponentiation and application to batch verification of digital signatures (2000), http://dasan.sejong.ac.kr/~chlim/pub/multi_exp.ps
  28. 28.
    Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. Journal of Cryptology 16(3), 143–184 (2003)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Micali, S.: Computationally sound proofs. SIAM Journal of Computing 30(4), 1253–1298 (2000)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS, pp. 116–125 (2001)Google Scholar
  31. 31.
    Neff, C.A.: Verifiable mixing (shuffling) of ElGamal pairs (2003), http://www.votehere.net/vhti/documentation/egshuf.pdf
  32. 32.
    Nguyen, L., Safavi-Naini, R., Kurosawa, K.: A provably secure and effcient verifiable shuffle based on a variant of the Paillier cryptosystem. Journal of Universal Computer Science 11(6), 986–1010 (2005)MathSciNetGoogle Scholar
  33. 33.
    Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: a formal model and a Paillier-based three-round construction with provable security. International Journal of Information Security 5(4), 241–255 (2006)CrossRefGoogle Scholar
  34. 34.
    Onodera, T., Tanaka, K.: Shufle for Paillier’s encryption scheme. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88-A(5), 1241–1248 (2005)Google Scholar
  35. 35.
    Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)Google Scholar
  36. 36.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  37. 37.
    Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)Google Scholar
  38. 38.
    Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jens Groth
    • 1
  • Yuval Ishai
    • 2
  1. 1.University College London 
  2. 2.Technion and University of California Los Angeles 

Personalised recommendations