A Practical Attack on KeeLoq

  • Sebastiaan Indesteege
  • Nathan Keller
  • Orr Dunkelman
  • Eli Biham
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4965)


KeeLoq is a lightweight block cipher with a 32-bit block size and a 64-bit key. Despite its short key size, it is widely used in remote keyless entry systems and other wireless authentication applications. For example, authentication protocols based on KeeLoq are supposedly used by various car manufacturers in anti-theft mechanisms. This paper presents a practical key recovery attack against KeeLoq that requires 216 known plaintexts and has a time complexity of 244.5 KeeLoq encryptions. It is based on the slide attack and a novel approach to meet-in-the-middle attacks. The fully implemented attack requires 65 minutes to obtain the required data and 7.8 days of calculations on 64 CPU cores. A variant which requires 216 chosen plaintexts needs only 3.4 days on 64 CPU cores. Using only 10 000 euro, an attacker can purchase a cluster of 50 dual core computers that will find the secret key in about two days. We investigated the way KeeLoq is intended to be used in practice and conclude that our attack can be used to subvert the security of real systems. An attacker can acquire chosen plaintexts in practice, and one of the two suggested key derivation schemes for KeeLoq allows to recover the master secret from a single key.


KeeLoq cryptanalysis block ciphers slide attacks meet-in-the-middle attacks 


  1. 1.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7(4), 229–246 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Tradeoffs with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 245–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 586–606. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A.: Cryptanalysis of the KeeLoq block cipher, Cryptology ePrint Archive, Report 2007/055, February 16 (2007),
  6. 6.
    Bogdanov, A.: Attacks on the KeeLoq Block Cipher and Authentication Systems. In: 3rd Conference on RFID Security 2007 (RFIDSec 2007),
  7. 7.
    Courtois, N.T., Bard, G.V.: Algebraic and Slide Attacks on KeeLoq, Cryptology ePrint Archive, Report 2007/062, May 8 (2007),
  8. 8.
    Courtois, N.T.: Personal communication (May 31, 2007)Google Scholar
  9. 9.
    Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq. In: Proceedings of Fast Software Encryption 2008, LNCS, Springer, Heidelberg (to appear)Google Scholar
  10. 10.
    Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Hellman, M.E.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on Information Theory 26, 401–406 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers with COPACOBANA — A Cost-Optimized Parallel Code Breaker. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Microchip Technology Inc. KeeLoq® Authentication Products,
  14. 14.
    Microchip Technology Inc., HCS410 KeeLoq® Code Hopping Encoder and Transponder Data Sheet,
  15. 15.
    Microchip Technology Inc., AN642: Code Hopping Decoder using a PIC16C56,
  16. 16.
    Microchip Technology Inc., TB001: Secure Learning RKE Systems using KeeLoq Encoders,
  17. 17.
    Wikipedia, KeeLoq (August 2007),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sebastiaan Indesteege
    • 1
  • Nathan Keller
    • 2
  • Orr Dunkelman
    • 1
  • Eli Biham
    • 3
  • Bart Preneel
    • 1
  1. 1.Department of Electrical Engineering ESAT/SCD-COSICKatholieke Universiteit Leuven.HeverleeBelgium
  2. 2.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael
  3. 3.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations