Interactive Multi-Perspective Views of Virtual 3D Landscape and City Models

  • Haik Lorenz
  • Matthias Trapp
  • Jürgen Döllner
  • Markus Jobst
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Based on principles of panorama maps we present an interactive visualization technique that generates multi-perspective views of complex spatial environments such as virtual 3D landscape and city models. Panorama maps seamlessly combine easily readable maps in the foreground with 3D views in the background – both within a single image. Such nonlinear, non-standard 3D projections enable novel focus & context views of complex virtual spatial environments. The presented technique relies on global space deformation to model multi-perspective views while using a standard linear projection for rendering which enables single-pass processing by graphics hardware. It automatically configures the deformation in a view-dependent way to maintain the multi-perspective view in an interactive environment. The technique supports different distortion schemata beyond classical panorama maps and can seamlessly combine different visualization styles of focus and context areas. We exemplify our approach in an interactive 3D tourist information system.

Keywords

multi-perspective views focus & context visualization global space deformation 3D city models virtual 3D landscape models geovisualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The world of H.C. Berann (accessed 2007), url: http://www.berann.comGoogle Scholar
  2. Angelidis, A., Cani, M.-P., Wyvill, G. & King S. (2004), Swirling sweepers: Constant-volume modeling, in Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, IEEE Computer Society, Washington, DC, USA, pp. 10-15.Google Scholar
  3. Asirvatham, A. & Hoppe, H. (2005), Terrain Rendering Using GPU-Based Geometry Clipmaps, in M. Pharr (ed.), GPU Gems 2, Addison-Wesley, pp. 27-45.Google Scholar
  4. Barr, A. H. (1984), Global and Local Deformations of Solid Primitives, in SIGGRAPH ’84: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, pp. 21-30.Google Scholar
  5. Boubekeur, T. & Schlick, C. (2005), Generic Mesh Refinement on GPU, in Proceedings of ACM SIGGRAPH/Eurographics Graphics Hardware 2005, ACM, pp. 99-104.Google Scholar
  6. Buchholz, H.; Bohnet, J. & Döllner, J. (2005), Smart and Physically-Based Navigation in 3D Geovirtual Environments, in IV ’05: Proceedings of the Ninth International Conference on Information Visualisation, IEEE Computer Society, Washington, DC, USA, pp. 629-635.Google Scholar
  7. Buchholz, H. & Döllner, J. (2005), View-Dependent Rendering of Multiresolution Texture-Atlases, in Proceedings Information Visualization 2005, pp. 215-222.Google Scholar
  8. Carpendale, M. S. T. & Montagnese, C. (2001), A Framework For Unifying Presentation Space, in UIST ’01: Proceedings of the 14th annual ACM symposium on User interface software and technology, ACM, New York, NY, USA, pp. 61-70.Google Scholar
  9. Chhugani, J.; Purnomo, B.; Krishnan, S.; Cohen, J.; Venkatasubramanian, S. & Johnson, D. S. (2005), vLOD: High-Fidelity Walkthrough of Large Virtual Environments, IEEE Transactions on Visualization and Computer Graphics 11(1), pp. 35-47.CrossRefGoogle Scholar
  10. Döllner, J.; Buchholz, H.; Nienhaus, M. & Kirsch, F. (2005), Illustrative Visualization of 3D City Models, in Robert F. Erbacher; Jonathan C. Roberts; Matti . T. Gröhn & Katy Börner, ed., Visualization and Data Analysis 2005, pp. 42-51.Google Scholar
  11. von Funck, W., Theisel, H. & Seidel, H.-P. (2006), Vector field based shape deformations, in Proceedings ACM SIGGRAPH 2006, ACM, New York, NY, USA, pp. 1118-1125.Google Scholar
  12. Gallier, J. (1999), Curves and Surfaces in Geometric Modeling: Theory and Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google Scholar
  13. Glassner, A. (2004), Digital Cubism, IEEE Computer Graphics and Applications 24(3), pp. 82-90.CrossRefGoogle Scholar
  14. Glassner, A. (2004), Digital Cubism, Part 2, IEEE Computer Graphics and Applications 24(4), pp. 84-95.CrossRefGoogle Scholar
  15. Gobbetti, E. & Marton, F. (2005), Far Voxels: A Multiresolution Framework for Interactive Rendering of Huge Complex 3D Models on Commodity Graphics Platforms, ACM Trans. Graph. 24(3), pp. 878-885.CrossRefGoogle Scholar
  16. Hauser, H. (2003), Generalizing Focus+Context Visualization, in Scientific Visualization: The Visual Extraction of Knowledge from Data (Proc. of the Dagstuhl 2003 Seminar on Scientific Visualization), Springer, pp. 305-327.Google Scholar
  17. Hwa, L. M.; Duchaineau, M. A. & Joy, K. I. (2004), Adaptive 4-8 Texture Hierarchies, in VIS ’04: Proceedings of the Conference on Visualization ’04, IEEE Computer Society, Washington, DC, USA, pp. 219-226.Google Scholar
  18. Keahey, A. (1998),The Generalized Detail-In-Context Problem, in INFOVIS ’98: Proceedings of the 1998 IEEE Symposium on Information Visualization, IEEE Computer Society, Washington, DC, USA, pp. 44-51.Google Scholar
  19. Kurzion, Y. & Yagel, R. (1997), Interactive Space Deformation with Hardware-Assisted Rendering, IEEE Computer Graphics and Applications 17(5), pp. 66-77.CrossRefGoogle Scholar
  20. Leung, Y. K. & Apperley, M. D. (1994), A Review and Taxonomy of Distortion-Oriented Presentation Techniques, ACM Transaction on Computer-Human Interaction 1(2), pp. 126-160.CrossRefGoogle Scholar
  21. Levoy, M. & Hanrahan, P. (1996), Light Field Rendering, in Proceedings ACM SIGGRAPH 1996, ACM, New York, NY, USA, pp. 31-42.Google Scholar
  22. Li, Y.; Shum, H.; Tang, C. & Szeliski, R. (2004), Stereo Reconstruction from Multiperspective Panoramas, IEEE Trans. Pattern Anal. Mach. Intell. 26(1), pp. 45-62.CrossRefGoogle Scholar
  23. Lindstrom, P. & Pascucci, V. (2002), Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization, IEEE Transactions on Visualization and Computer Graphics 8(3), pp. 239-254.CrossRefGoogle Scholar
  24. Löffelmann, H. & Gröller, E. (1996), Ray Tracing with Extended Cameras, Journal of Visualization and Computer Animation 7(4), pp. 211-227.CrossRefGoogle Scholar
  25. Mackinlay, J. D.; Card, S. K. & Robertson, G. G. (1990), Rapid Controlled Movement Through a Virtual 3D Workspace, in SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer graphics and Interactive Techniques, ACM, New York, USA, pp. 171-176.Google Scholar
  26. Patterson, T. (2000), A View From on High: Heinrich Berann’s Panoramas and Landscape Visualization Techniques For the US National Park Service, Cartographic Perspectives 36, pp. 38-65.Google Scholar
  27. Premoze, S. (2002), Computer Generated Panorama Maps, in Proceedings 3rd ICA Mountain Cartography Workshop. Mt. Hood, Oregon.Google Scholar
  28. Roman, A.; Garg, G. & Levoy, M. (2004), Interactive Design of Multi-Perspective Images for Visualizing Urban Landscapes, in VIS ’04: Proceedings of the conference on Visualization ’04, IEEE Computer Society, Washington, DC, USA, pp. 537-544.Google Scholar
  29. Sander, P. V. & Mitchell, J. L. (2006), Progressive Buffers: View-Dependent Geometry and Texture LOD Rendering, in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, ACM, New York, USA, pp. 1-18.Google Scholar
  30. Spindler, M., Bubke, M., Germer, T. & Strothotte, T. (2006), Camera textures, in Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia, ACM, New York, USA, pp. 295-302.Google Scholar
  31. Stone, M. C., Fishkin, K. & Bier, E. A. (1994), The movable filter as a user interface tool, in Proceedings of the Conference on Human Factors in Computing Systems, ACM, New York, USA, pp. 306-312.Google Scholar
  32. Vallance S. & Calder, P. (2001), Multi-perspective images for visualization, in ACM International Conference Proceeding Series, Vol. 147, ACM, New York, USA, pp. 69-76.Google Scholar
  33. Whitfield, P. (2005), Cities of the World. A History in Maps, The British Library, London.Google Scholar
  34. Wonka, Peter; Wimmer, Michael & Francois Sillion (2001), Instant Visibility, inA. Chalmers & T.-M. Rhyne, ed.,Proceedings of Eurographics 2001, The Eurographics Association and Blackwell Publishers, pp. 411-421.Google Scholar
  35. Yang, Y.; Chen, J. X. & Beheshti, M. (2005), Nonlinear Perspective Projections and Magic Lenses: 3D View Deformation, IEEE Computer Graphics and Applications 25(1), pp. 76-84.CrossRefGoogle Scholar
  36. Yu, J. & McMillan, L. (2004), A Framework for Multiperspective Rendering, inAlexander Keller & Henrik Wann Jensen, ed., Rendering Techniques 2004, Proceedings of Eurographics Symposium on Rendering 2004, EUROGRAPHICS Association, pp. 61-68.Google Scholar
  37. Zanella, A., Carpendale, M. S. T. & Rounding, M. (2002), On the effects of viewing cues in comprehending distortions, in Proceedings of the second Nordic conference on Human-computer interaction, ACM, New York, USA, pp. 119-128.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Haik Lorenz
    • 1
  • Matthias Trapp
    • 1
  • Jürgen Döllner
    • 1
  • Markus Jobst
    • 2
  1. 1.Hasso-Plattner-InstituteUniversity of Potsdam14482 PotsdamGermany
  2. 2.Vienna University of TechnologyA-1040 ViennaAustria

Personalised recommendations