Crustal Deformation Models and Time-Frequency Analysis of GPS Data from Deception Island Volcano (South Shetland Islands, Antarctica)

  • María Eva Ramírez
  • Manuel Berrocoso
  • María José González
  • Alberto Fernández
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 112)


We have applied wavelet techniques to analyze GPS time-series data from REGID geodetic network, deployed at Deception Island Volcano (South Shetland Islands, Antarctica). In the present analysis wavelets are used to detect periodic components and to filter the data. The high frequency components can be associated to the orbital period of the satellites and to local tidal effects, whereas the medium frequencies seem to be related to the weather cycle. The wavelet filtering procedure is based on the SURE estimator, and a considerable reduction in noise is achieved, particularly in the Up component, whose deviation is reduced down to the deviation of the horizontal components before the denoising. An estimation of the displacements in the network for the period 2001/02 – 2005/06 is also included.


South Shetland Islands Volcano monitoring Continuous wavelet transform Wavelet denoising 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Mallat: A wavelet tour of signal processing. (Academic Press, London 1999) pp 1–637CrossRefGoogle Scholar
  2. 2.
    J. Ibáñez, J. Almendros, G. Alguacil, J. Morales, E. Del Pezzo, R. Ortiz: Eventos sísmicos de largo período en Isla Decepción: evidencias de volcanismo activo. Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.) 93, 1–4:105–112 (1997)Google Scholar
  3. 3.
    M. Berrocoso: Modelos y formalismos para el tratamiento de observaciones GPS. Aplicación al establecimiento de redes geodésicas y geodinámicas en la Antártida. (Boletín ROA, Vol 1/97. Ed. Real Instituto y Observatorio de la Armada, San Fernando, Cádiz 1997)Google Scholar
  4. 4.
    J. Ibáñez, J. Almendros, E. Carmona, C. Martínez Arévalo, M. Abril: The recent seismo-volcanic activity at Deception Island volcano. Deep-Sea Res. II 50:1611–1629 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Berrocoso, M. E. Ramírez, A. Fernández-Ros: Horizontal Deformation Models for Deception Island (South Shetland Islands, Antarctica). In: Geodetic Deformation Monitoring: From Geophysical to Engineering Roles, IAG Vol. 131, ed by F. Sanso and A. Gil (Springer, Berlin Heidelberg New York 2006) pp 217–221Google Scholar
  6. 6.
    M. Berrocoso, A.Fernández-Ros, C. Torrecillas, J. M. Enríquez de Salamanca, M. E. Ramírez, A. Pérez-Peña, M. J. González, R. Páez, Y. Jiménez, A. García, M. Tárraga, F. García: Geodetic Research on Deception Island. In: Antarctica, Contributions to Global Earth Sciences ed by D.F. Fütterer, D-Damaske, G. Kleinschmidt, H. Miller and F. Tessensohn (Springer, Berlin Heidelberg New York 2006) pp 391–396Google Scholar
  7. 7.
    A. Fernández-Ros: Displacement models and crustal deformations from GPS observations. Application to Deception Volcano. PhD Thesis, University of Cádiz, Spain (2006)Google Scholar
  8. 8.
    A. Fernández-Ros, M. Berrocoso, M. E. Ramírez: Volcanic deformation models for Deception Island (South Shetland Islands, Antarctica). In: Antarctica: a keystone in a changing world. Proceedings for the 10th International Symposium on Antarctic Earth Sciences. Extended abstract 094 (U. S. Geological Survey and The National Academies, California 2007)Google Scholar
  9. 9.
    J. L. Smellie: Lithostratigraphy and volcanic evolution of Deception Island, South Shetland Islands. Antarc. Sci. 13 2:188–209 (2001)Google Scholar
  10. 10.
    J. Martí, J. Vila, J. Rey: Deception Island (Bransfield Strait, Antarctica): An example of volcanic caldera developed by extensional tectonic. J. Geolog. Soc. Lon. 32:253–265 (1994)Google Scholar
  11. 11.
    M. Martini, L. Giannini: Deception Islands (South Shetlands): an area of active Volcanism in Antarctica. Società Geologica Italiana 43:117–122 (1998)Google Scholar
  12. 12.
    A. García and DECVOL Working Group: A cross-disciplinary study at Deception Island (South shetland Islands, Antarctica). Evaluation of the recent volcanological status. (Internal Report 2002)Google Scholar
  13. 13.
    J. Ibáñez, E. del Pezzo, J. Almendros, M. La Rocca, G. Alguacil, R. Ortiz, A. García: Seismovolcanic signals at Deception Island Volcano, Antarctica: Wave field analysis and source modelling. J. Geophys. Res. 105:13905–13931 (2000)CrossRefGoogle Scholar
  14. 14.
    G. Beutler, H. Bock, E. Brockmann and BERNESE Working Group: BERNESE Software Version 4.2. (Ed by U Hungentobler, S Schaer, P Fridez. Astronomical Institute, University of Bern, Bern 2001) pp 1–500Google Scholar
  15. 15.
    M. N. Bouin, C. Vigny: New constraints on Antarctic plate motion and deformation from GPS data. J. Geophys. Res. 105:28279–28293 (2000)CrossRefGoogle Scholar
  16. 16.
    K. V. Kumar, L. J. Miyashita K: Secular crustal deformation in central Japan, based on the wavelet analysis of GPS time-series data. Earth Planets Space 54:133–129 (2002)Google Scholar
  17. 17.
    E. M. Souza, J. F. G. Monico: Wavelet Shrinkage: High frequency multipath reduction from GPS relative positioning. GPS Solut. 8:152–159 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Ogaja, J. Wang, C. Rizos: Detection of Wind-Induced Response by Wavelet Transformed GPS Solutions. J. Surv. Engrg. 129, 3:99–105 (2003)CrossRefGoogle Scholar
  19. 19.
    C. Stein: Estimation of the mean of a multivariate normal distribution. Annals of Statistics 9:1135–1151 (1981)CrossRefGoogle Scholar
  20. 20.
    A. P. Calderón: Intermediate spaces and interpolation. Stud. Math. 24:113–190 (1964)Google Scholar
  21. 21.
    D. Donoho, I. Johnstone: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81:425–455 (1994)CrossRefGoogle Scholar
  22. 22.
    D. Donoho, I. Johnsotone: Adapting to unknown smoothness via wavelet shrinkage. J. American Statist. Assoc. 90:1200–1224 (1995)CrossRefGoogle Scholar
  23. 23.
    A. W. Marshall, I. Olkin: Inequalities: Theory of Majorization and its applications. (Academic Press, Boston 1979) pp 1–569Google Scholar
  24. 24.
    C. Bruyninx, M. Yseboodt: Frequency analysis of GPS coordinate time from the ROB EUREF Analysis Centre. Technical Report. (TWG/Status of the EUREF Permanent Network 2001)Google Scholar
  25. 25.
    A. Caporali: Average strain rate in the Italian crust inferred from a permanent GPS network- I. Statistical analysis of the time-series of permanent GPS stations. Geophys. J. Int. 155:241–253 (2003)CrossRefGoogle Scholar
  26. 26.
    M. Poutanen, H. Koivula, M. Ollikainen: On the periodicity of GPS time series. In: Proceedings IAG 2001 Scientific Assembly (Budapest, Hungary 2001)Google Scholar
  27. 27.
    X. L. Ding, D. W. Zheng, Q. Chen, C. Huang, W. Chen: Analysis of seasonal and interannual variations in the position of permanent GPS tracking stations. In: Proceedings FIG XXII International Congress (Washington 2002)Google Scholar
  28. 28.
    D. Altadill: Quasi-periodic oscillations in the high ionosphere related to the planetary waves activity in the medium atmosphere. PhD. Thesis, Ramón Llull University, Barcelona (2001)Google Scholar
  29. 29.
    M. Vetterli, J. Kovacevic: Wavelets and Subband Coding. (Ed. Pearson Education, 1995) pp 1–448Google Scholar
  30. 30.
    Y. Bock, R. M. Nikolaidis, P. J. Jonge: Instantaneous geodetic positioning at medium distances with the Global Positioning System. J. Geophys. Res. 105, B12: 28223–28253 (2000)CrossRefGoogle Scholar
  31. 31.
    M. E. Ramírez: Crustal deformation models in volcanic areas by means of the wavelet theory. Application to Deception Island Volcano. PhD Thesis, University of Cádiz, Spain (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • María Eva Ramírez
    • 1
  • Manuel Berrocoso
    • 1
  • María José González
    • 1
  • Alberto Fernández
    • 1
  1. 1.Laboratorio de Astronomía Geodesia y Cartografía Departamento de Matemáticas Facultad de CienciasUniversidad de CádizSpain

Personalised recommendations