Trading Infinite Memory for Uniform Randomness in Timed Games

  • Krishnendu Chatterjee
  • Thomas A. Henzinger
  • Vinayak S. Prabhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4981)


We consider concurrent two-player timed automaton games with ω-regular objectives specified as parity conditions. These games offer an appropriate model for the synthesis of real-time controllers. Earlier works on timed games focused on pure strategies for each player. We study, for the first time, the use of randomized strategies in such games. While pure (i.e., nonrandomized) strategies in timed games require infinite memory for winning even with respect to reachability objectives, we show that randomized strategies can win with finite memory with respect to all parity objectives. Also, the synthesized randomized real-time controllers are much simpler in structure than the corresponding pure controllers, and therefore easier to implement. For safety objectives we prove the existence of pure finite-memory winning strategies. Finally, while randomization helps in simplifying the strategies required for winning timed parity games, we prove that randomization does not help in winning at more states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, B., de Alfaro, L., Faella, M.: Average reward timed games. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 65–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–88. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Trading infinite memory for uniform randomness in timed games. Technical Report UCB/EECS-2008-4, EECS Department, University of California, Berkeley (January 2008)Google Scholar
  9. 9.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Faella, M., La Torre, S., Murano, A.: Automata-theoretic decision of timed games. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 94–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: LICS 2002, pp. 167–176. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  14. 14.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theoretical Computer Science 221, 369–392 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Pnueli, A., Asarin, E., Maler, O., Sifakis, J.: Controller synthesis for timed automata. In: Proc. System Structure and Control, Elsevier, Amsterdam (1998)Google Scholar
  18. 18.
    Segala, R., Gawlick, R., Søgaard-Andersen, J.F., Lynch, N.A.: Liveness in timed and untimed systems. Inf. Comput. 141(2), 119–171 (1998)MATHCrossRefGoogle Scholar
  19. 19.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond Words, ch. 7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Wong-Toi, H., Hoffmann, G.: The control of dense real-time discrete event systems. In: Proc. of 30th Conf. Decision and Control, pp. 1527–1528 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Thomas A. Henzinger
    • 1
    • 2
  • Vinayak S. Prabhu
    • 1
  1. 1.EECS, UC Berkeley 
  2. 2.CCS, EPFL 

Personalised recommendations