Logical Verification and Systematic Parametric Analysis in Train Control

  • André Platzer
  • Jan-David Quesel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4981)

Abstract

We formally verify hybrid safety properties of cooperation protocols in a fully parametric version of the European Train Control System (ETCS). We present a formal model using hybrid programs and verify correctness using our logic-based decomposition procedure. This procedure supports free parameters and parameter discovery, which is required to determine correct design choices for free parameters of ETCS.

Keywords

parametric verification logic for hybrid systems symbolic decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating travel agents. International Journal of Control 79(5), 395–421 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    ERTMS User Group, UNISIG: ERTMS/ETCS System requirements specification. Version 2.2.2 (2002), http://www.aeif.org/ccm/default.asp
  4. 4.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)CrossRefGoogle Scholar
  6. 6.
    Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 216–232. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning (to appear, 2008)Google Scholar
  8. 8.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)MATHGoogle Scholar
  9. 9.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proceedings of the IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  10. 10.
    Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the European Train Control System. In: FMCAD, pp. 76–77. IEEE Computer, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • André Platzer
    • 1
  • Jan-David Quesel
    • 1
  1. 1.Department of Computing ScienceUniversity of OldenburgGermany

Personalised recommendations