Graded LinClosure and Its Role in Relational Data Analysis

  • Radim Belohlavek
  • Vilem Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4923)


We present graded extension of the algorithm LinClosure. Graded LinClosure can be used to compute degrees of semantic entailment from sets of fuzzy attribute implications. It can also be used together with graded extension of Ganter’s NextClosure algorithm to compute non-redundant bases of data tables with fuzzy attributes. We present foundations, the algorithm, and illustrative examples.


Fuzzy Logic Data Table Residuated Lattice Formal Concept Analysis Truth Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)zbMATHGoogle Scholar
  2. 2.
    Belohlavek, R., Chlupova, M., Vychodil, V.: Implications from data with fuzzy attributes. In: AISTA 2004 in Cooperation with the IEEE Computer Society Proceedings, p. 5 (2004)Google Scholar
  3. 3.
    Belohlavek, R., Funiokova, T., Vychodil, V.: Fuzzy closure operators with truth stressers. Logic Journal of IGPL 13(5), 503–513 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA), May 22–25, 2005, pp. 663–668 (2005) (proceedings on CD), abstract in printed proceedings, p. 44 Google Scholar
  5. 5.
    Belohlavek, R., Vychodil, V.: Fuzzy attribute logic: attribute implications, their validity, entailment, and non-redundant basis. In: Liu, Y., Chen, G., Ying, M. (eds.) Fuzzy Logic, Soft Computing & Computational Intelligence: Eleventh International Fuzzy Systems Association World Congress, vol. I, pp. 622–627. Tsinghua University Press and Springer (2005)Google Scholar
  6. 6.
    Belohlavek, R., Vychodil, V.: Fuzzy attribute implications: Computing non-redundant bases using maximal independent sets”. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 1126–1129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Belohlavek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874, pp. 45–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Belohlavek, R., Vychodil, V.: Functional dependencies of data tables over domains with similarity relations. In: Proc. IICAI 2005, pp. 2486–2504 (2005)Google Scholar
  9. 9.
    Belohlavek, R., Vychodil, V.: Data tables with similarity relations: Functional dependencies, complete rules and non-redundant bases. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 644–658. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Belohlavek, R., Vychodil, V.: Computing non-redundant bases of if-then rules from data tables with graded attributes. In: Zhang, Y.Q., Lin, T.Y. (eds.) Proc. IEEE-GrC 2006, pp. 205–210 (2006)Google Scholar
  11. 11.
    Belohlavek, R., Vychodil, V.: Properties of models of fuzzy attribute implications. In: Proc. SCIS & ISIS 2006: Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems, Tokyo Institute of Technology, Japan Society for Fuzzy Theory and Intelligent Informatics, pp. 1880–3741 (2006)Google Scholar
  12. 12.
    Belohlavek, R., Vychodil, V.: Fuzzy attribute logic over complete residuated lattices. J. Exp. Theor. Artif. Intelligence 18(4), 471–480 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications. J. Wiley, Chichester (2004)zbMATHGoogle Scholar
  14. 14.
    Ganter, B.: Begriffe und Implikationen, manuscript (1998)Google Scholar
  15. 15.
    Ganter, B.: Algorithmen zur formalen Begriffsanalyse. In: Ganter, B., Wille, R., Wolff, K.E. (eds.) (Hrsg.): Beiträge zur Begriffsanalyse, pp. 241–254. B. I. Wissenschaftsverlag, Mannheim (1987)Google Scholar
  16. 16.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  17. 17.
    Goguen, J.: The logic of inexact concepts. Synthese 18(9), 325–373 (1968)Google Scholar
  18. 18.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  19. 19.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  20. 20.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124, 329–333 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  22. 22.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983)zbMATHGoogle Scholar
  23. 23.
    Pavelka, J.: On fuzzy logic I, II, III. Z. Math. Logik Grundlagen Math. 25, 45–52, 119–134, 447–464 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pollandt, S.: Fuzzy Begriffe. Springer, Berlin Heidelberg (1997)zbMATHGoogle Scholar
  25. 25.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Annals of Pure and Applied Logic 33, 195–211 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Radim Belohlavek
    • 1
    • 2
  • Vilem Vychodil
    • 1
    • 2
  1. 1.Dept. Systems Science and Industrial Engineering T. J. Watson School of Engineering and Applied ScienceBinghamton University–SUNYBinghamtonUSA
  2. 2.Dept. Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations