Advertisement

Using Formal Concept Analysis for Mining and Interpreting Patient Flows within a Healthcare Network

  • Nicolas Jay
  • François Kohler
  • Amedeo Napoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4923)

Abstract

This paper presents an original experiment based on frequent itemset search and lattice based classification. This work focuses on the ability of iceberg-lattices to discover and represent flows of patient within a healthcare network. We give examples of analysis of real medical data showing how Formal Concept Analysis techniques can be helpful in the interpretation step of the knowledge discovery in databases process. This combined approach has been successfully used to assist public health managers in designing healthcare networks and planning medical resources.

Keywords

Formal Concept Analysis frequent itemsets network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communication of the ACM 29–11, 27–34 (1996)CrossRefGoogle Scholar
  2. 2.
    Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  3. 3.
    Jay, N., Napoli, A., Kohler, F.: Cancer Patient Flows Discovery in DRG Databases. In: Proc. MIE 2006 Conf. (to appear)Google Scholar
  4. 4.
    Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing Network Data IEEE Transactions on Visualization and Computer Graphics, vol. 1, pp. 16–28 (1995)Google Scholar
  5. 5.
    Freeman, L.C., White, D.R.: Using Galois Lattices to Represent Network Data. Sociological Methodology 23, 127–146 (1993)CrossRefGoogle Scholar
  6. 6.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of the ACM SIGMOD Conference on Management of Data, Washington, D.C, pp. 207–216 (May 1993)Google Scholar
  7. 7.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed set based discovery of small covers for association rules. In: Proc. BDA conf., pp. 361–381 (1999)Google Scholar
  8. 8.
    Stumme, G.: Conceptual Knowledge Discovery with Frequent Concept Lattices. FB4-Preprint 2043, TU Darmstadt (1999)Google Scholar
  9. 9.
    Zaki, M.J., Hsiao, C.: CHARM: An Efficient Algorithm for Closed Itemset Mining. In: SDM (2002)Google Scholar
  10. 10.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC Data Knowl. Eng., vol. 42, pp. 189–222. Elsevier Science Publishers B. V, Amsterdam (2002)Google Scholar
  11. 11.
    Duquenne, V.: Lattice analysis and the representation of handicap associations. Social Networks 18, 217–230 (1996)CrossRefGoogle Scholar
  12. 12.
    Duquenne, V.: Latticial structures in data analysis. Theorical Computer Science 217, 407–436 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: GALICIA: An open platform for lattices. In: Using Conceptual Structures: Contributions to the 11th Intl. Conference on Conceptual Structures (ICCS 2003), Dresden, Germany, vol. 25, pp. 241–254. Shaker, Ithaca (2003)Google Scholar
  14. 14.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicolas Jay
    • 1
    • 2
  • François Kohler
    • 2
  • Amedeo Napoli
    • 1
  1. 1.Équipe Orpailleur, LORIA, Vandoeuvre-lès-NancyFrance
  2. 2.Laboratoire SPI-EAO, Faculté de Médecine, Vandoeuvre-lès-NancyFrance

Personalised recommendations