Towards Concise Representation for Taxonomies of Epistemic Communities

  • Camille Roth
  • Sergei Obiedkov
  • Derrick Kourie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4923)


We present an application of formal concept analysis aimed at representing a meaningful structure of knowledge communities in the form of a lattice-based taxonomy. The taxonomy groups together agents (community members) who interact and/or develop a set of notions—i.e. cognitive properties of group members. In the absence of appropriate constraints on how it is built, a knowledge community taxonomy is in danger of becoming extremely complex, and thus difficult to comprehend. We consider two approaches to building a concise representation that respects the underlying structural relationships, while hiding uninteresting and/or superfluous information. The first is a pruning strategy that is based on the notion of concept stability, and the second is a representational improvement based on nested line diagrams. We illustrate the method with a small sample of a community of embryologists.


Formal Concept Stability Index Concept Lattice Concise Representation Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmitt, F. (ed.): Socializing Epistemology: The Social Dimensions of Knowledge. Lanham, MD: Rowman & Littlefield (1995)Google Scholar
  2. 2.
    Leydesdorff, L.: In search of epistemic networks. Social Studies of Science 21, 75–110 (1991)CrossRefGoogle Scholar
  3. 3.
    Haas, P.: Introduction: Epistemic communities and international policy coordination. International Organization 46(1), 1–35 (1992)CrossRefGoogle Scholar
  4. 4.
    McCain, K.W.: Cocited author mapping as a valid representation of intellectual structure. J. Am. Society for Information Science 37(3), 111–122 (1986)Google Scholar
  5. 5.
    Atran, S.: Folk biology and the anthropology of science: Cognitive universals and cognitive particulars. Behavioral and Brain Sciences 21, 547–609 (1998)CrossRefGoogle Scholar
  6. 6.
    Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. Journal of Mathematical Sociology 1, 49–80 (1971)CrossRefGoogle Scholar
  7. 7.
    Roth, C., Bourgine, P.: Epistemic communities: Description and hierarchic categorization. Mathematical Population Studies 12(2), 107–130 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Roth, C., Bourgine, P.: Lattice-based dynamic and overlapping taxonomies: The case of epistemic communities. Scientometrics 69(2) (2006)Google Scholar
  9. 9.
    Kuznetsov, S.O.: On stability of a formal concept. In: SanJuan, E. (ed.) JIM, Metz, France (2003)Google Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  11. 11.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Noyons, E.C.M., van Raan, A.F.J.: Monitoring scientific developments from a dynamic perspective: self-organized structuring to map neural network research. Journal of the American Society for Information Science 49(1), 68–81 (1998)Google Scholar
  13. 13.
    White, D.R., Duquenne, V.: Social network & discrete structure analysis: Introduction to a special issue. Social Networks 18, 169–172 (1996)CrossRefGoogle Scholar
  14. 14.
    Freeman, L.: Cliques, Galois lattices, and the structure of human social groups. Social Networks 18, 173–187 (1996)CrossRefGoogle Scholar
  15. 15.
    Falzon, L.: Determining groups from the clique structure in large social networks. Social Networks 22, 159–172 (2000)CrossRefGoogle Scholar
  16. 16.
    Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  17. 17.
    Peyriéras, N.: Personal communication (2005)Google Scholar
  18. 18.
    McCain, K.W., Verner, J.M., Hislop, G.W., Evanco, W., Cole, V.: The use of bibliometric and Knowledge Elicitation techniques to map a knowledge domain: Software Engineering in the 1990s. Scientometrics 65(1), 131–144 (2005)CrossRefGoogle Scholar
  19. 19.
    Grunwald, D.J., Eisen, J.S.: Headwaters of the zebrafish – emergence of a new model vertebrate. Nature Rev. Genetics 3(9), 717–724 (2002)CrossRefGoogle Scholar
  20. 20.
    Bradbury, J.: Small fish, big science. PLoS Biology 2(5), 568–572 (2004)CrossRefGoogle Scholar
  21. 21.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Expt. Theor. Artif. Intell. 14(2/3), 189–216 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Bayardo, J. R., Goethals, B., Zaki, M. (eds.): Proc. of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004), (2004)Google Scholar
  24. 24.
    Kuznetsov, S.O.: Stability as an estimate of the degree of substantiation of hypotheses derived on the basis of operational similarity. Nauchn. Tekh. Inf., Ser.2 (Automat. Document. Math. Linguist.) (12), 21–29 (1990)Google Scholar
  25. 25.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, pp. 1137–1145 (1995)Google Scholar
  26. 26.
    Batni, R.P., Russell, J.D., Kime, C.R.: An efficient algorithm for finding an irredundant set cover. J. Ass. for Comp. Machinery 21(3), 351–355 (1974)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Belohlávek, R., Sklenar, V.: Formal concept analysis constrained by attribute-dependency formulas. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 176–191. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Rome, J.E., Haralick, R.M.: Towards a formal concept analysis approach to exploring communities on the world wide web. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 33–48. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    Wille, R.: Conceptual structures of multicontexts. In: Eklund, P.W., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 23–29. Springer, Heidelberg (1996)Google Scholar
  30. 30.
    Wolff, K.E.: Temporal concept analysis. In: Mephu Nguifo, E., et al. (eds.) ICCS-2001 Intl. Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, Palo Alto (CA), Stanford Univ, pp. 91–107 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Camille Roth
    • 1
  • Sergei Obiedkov
    • 2
  • Derrick Kourie
    • 3
  1. 1.CIRESS/LEREPSUniversity of ToulouseFrance
  2. 2.Department of Applied MathematicsHigher School of EconomicsMoscowRussia
  3. 3.Department of Computer ScienceUniversity of PretoriaSouth Africa

Personalised recommendations