Preferences and Assumption-Based Argumentation for Conflict-Free Normative Agents

  • Dorian Gaertner
  • Francesca Toni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4946)

Abstract

Argumentation can serve as an effective computational tool and as a useful abstraction for various agent activities and in particular for agent reasoning. In this paper we further support this claim by mapping a form of normative BDI agents onto assumption-based argumentation. By way of this mapping we equip our agents with the capability of resolving conflicts amongst norms, beliefs, desires and intentions. This conflict resolution is achieved by using a variety of agents’ preferences, ranging from total to partial orderings over norms, beliefs, desires and intentions, to entirely dynamic preferences defined in terms of rules. We define one mapping for each preference representation. We illustrate the mappings with examples and use an existing computational tool for assumption-based argumentation, the CaSAPI system, to animate conflict resolution within our agents. Finally, we study how the different mappings relate to one another.

Keywords

norms BDI agents conflicts argumentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation frameworks. J. Autom. Reason. 29(2), 125–169 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic framework for default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architecture: Conflicts between beliefs, obligations, intentions and desires. In: Proceedings of AGENTS 2001, pp. 9–16. ACM Press, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Casali, A., Godo, L., Sierra, C.: Graded BDI models for agent architectures. In: Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.) Federation over the Web. LNCS (LNAI), vol. 3847, pp. 126–143. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Dignum, F., Morley, D., Sonenberg, E., Cavendon, L.: Towards socially sophisticated BDI agents. In: Proceedings of ICMAS 2000, pp. 111–118. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  8. 8.
    Doutre, S., Bench-Capon, T.J.M., Dunne, P.E.: Explaining preferences with argument positions. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 1560–1561. Professional Book Center (2005)Google Scholar
  9. 9.
    Dung, P.: The acceptability of arguments and its fundamental role in non-monotonic reasoning and logic programming and n-person game. Artificial Intelligence 77 (1995)Google Scholar
  10. 10.
    Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170, 114–159 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Technical report, Imperial College London (2006)Google Scholar
  12. 12.
    Dung, P., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based argumentation. In: Proceedings of COMMA (2006)Google Scholar
  13. 13.
    Dunne, P.E., Bench-Capon, T.J.M.: Identifying audience preferences in legal and social domains. In: Proceedings of the 15th International Conference on Database and Expert Systems Applications, Zaragoza, Spain, pp. 518–527 (September 2004)Google Scholar
  14. 14.
    Gaertner, D., Clark, K., Sergot, M.: Ballroom etiquette: A case study for norm-governed multi-agent systems. In: Proceedings of the 1st International Workshop on Coordination, Organisation, Institutions and Norms (2006)Google Scholar
  15. 15.
    Gaertner, D., Noriega, P., Sierra, C.: Extending the BDI architecture with commitments. In: Proceedings of the 9th International Conference of the Catalan Association of Artificial Intelligence (2006)Google Scholar
  16. 16.
    Gaertner, D., Toni, F.: Conflict-free normative agents using assumption-based argumentation. In: Proceedings of the Fourth International Workshop on Argumentation in Multi-Agent Systems (2007)Google Scholar
  17. 17.
    Gaertner, D., Toni, F.: A credulous and sceptical argumentation system. In: Proceedings of ArgNMR (2007), www.doc.ic.ac.uk/~dg00/casapi.html
  18. 18.
    García, A., Noriega, P., Rodríguez-Aguilar, J.-A.: An Algorithm for Conflict Resolution in Regulated Compound Activities. In: ESAW workshop (2006)Google Scholar
  19. 19.
    Giunchiglia, F., Serafini, L.: Multi-language hierarchical logics or: How we can do without modal logics. Artificial Intelligence 65(1), 29–70 (1994)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In: Proceedings of the European Conference on Artificial Intelligence, pp. 33–37 (August 2004)Google Scholar
  21. 21.
    Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous agents. In: Proceedings of AAMAS 2003, pp. 883–890 (2003)Google Scholar
  22. 22.
    Kollingbaum, M., Norman, T.: Strategies for resolving norm conflict in practical reasoning. In: ECAI Workshop Coordination in Emergent Agent Societies (2004)Google Scholar
  23. 23.
    Kowalski, R.A., Toni, F.: Abstract argumentation. Journal of AI and Law, Special Issue on Logical Models of Argumentation 4(3-4), 275–296 (1996)Google Scholar
  24. 24.
    Parsons, S., Sierra, C., Jennings, N.: Agents that reason and negotiate by arguing. Journal of Logic and Computation 8(3), 261–292 (1998)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics 7(1), 25–75 (1997)MATHMathSciNetGoogle Scholar
  26. 26.
    Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.: Argumentation-based negotiation. Knowledge Engineering Review (2004)Google Scholar
  27. 27.
    Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First International Conference on Multiagent Systems, San Francisco (1995)Google Scholar
  28. 28.
    Sadri, F., Stathis, K., Toni, F.: Normative KGP agents. Computational and Mathematical Organization Theory 12(2/3), 101–126 (2006)MATHCrossRefGoogle Scholar
  29. 29.
    Sadri, F., Stathis, K., Toni, F.: Normative kgp agents. Computational & Mathematical Organization Theory 12(2-3) (October 2006)Google Scholar
  30. 30.
    Sartor, G.: Normative conflicts in legal reasoning. Artificial Intelligence and Law 1(2-3), 209–235 (1992)CrossRefGoogle Scholar
  31. 31.
    Toni, F.: Assumption-based argumentation for closed and consistent defeasible reasoning. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, Springer, Heidelberg (2007)Google Scholar
  32. 32.
    Toni, F.: Assumption-based argumentation for selection and composition of services. In: Proceedings of the 8th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA VIII) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dorian Gaertner
    • 1
  • Francesca Toni
    • 1
  1. 1.Department of ComputingImperial CollegeLondonUK

Personalised recommendations