Non-termination in Idempotent Semirings

  • Peter Höfner
  • Georg Struth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4988)


We study and compare two notions of non-termination on idempotent semirings: infinite iteration and divergence. We determine them in various models and develop conditions for their coincidence. It turns out that divergence yields a simple and natural way of modelling infinite behaviour, whereas infinite iteration shows some anomalies.


Homomorphic Image Galois Connection Idempotent Semirings Equational Axiomatisation Complete Semilattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arden, D.: Delayed logic and finite state machines. In: Theory of Computing Machine Design, pp. 1–35. University of Michigan Press (1960)Google Scholar
  2. 2.
    Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Desharnais, J., Möller, B., Struth, G.: Termination in modal Kleene algebra. In: Lévy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) IFIP TCS 2004, pp. 647–660. Kluwer, Dordrecht (2004): Revised version: Algebraic Notions of Termination. Technical Report 2006-23, Institut für Informatik, Universität Augsburg (2006)Google Scholar
  4. 4.
    Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans. Computational Logic 7(4), 798–833 (2006)Google Scholar
  5. 5.
    Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-context-free languages. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 68–80. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Goldblatt, R.: An algebraic study of well-foundedness. Studia Logica 44(4), 423–437 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Höfner, P., Struth, G.: January 14 (2008),
  8. 8.
    Höfner, P., Struth, G.: Automated reasoning in Kleene algebra. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation 110(2), 366–390 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    McCune, W.: Prover9 and Mace4, January 14 (2008),
  11. 11.
    Möller, B.: Kleene getting lazy. Sci. Comput. Programming 65, 195–214 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Möller, B., Struth, G.: Algebras of modal operators and partial correctness. Theoretical Computer Science 351(2), 221–239 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  14. 14.
    Pratt, V.: Dynamic algebras: Examples, constructions, applications. Studia Logica 50, 571–605 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Struth, G.: Reasoning automatically about termination and refinement. In: Ranise, S. (ed.) International Workshop on First-Order Theorem Proving, Technical Report ULCS-07-018, Department of Computer Science, University of Liverpool, pp. 36–51 (2007)Google Scholar
  16. 16.
    von Wright, J.: Towards a refinement algebra. Science of Computer Programming 51(1-2), 23–45 (2004)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter Höfner
    • 1
  • Georg Struth
    • 1
  1. 1.Department of Computer ScienceUniversity of SheffieldUnited Kingdom

Personalised recommendations