Automated Reasoning for Hybrid Systems — Two Case Studies —

  • Peter Höfner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4988)


At an abstract level hybrid systems are related to variants of Kleene algebra. Since it has recently been shown that Kleene algebras and their variants, like omega algebras, provide a reasonable base for automated reasoning, the aim of the present paper is to show that automated algebraic reasoning for hybrid system is feasible. We mainly focus on applications. In particular, we present case studies and proof experiments to show how concrete properties of hybrid systems, like safety and liveness, can be algebraically characterised and how off-the-shelf automated theorem provers can be used to verify them.


Hybrid System Theorem Prover Security Service Automate Reasoning Algebraic Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aboul-Hosn, K., Kozen, D.: KAT-ML: An interactive theorem prover for Kleene algebra with tests. Journal of Applied Non-Classical Logics 16(1–2), 9–33 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Comp. Sc. 138(1), 3–34 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Hybrid Systems, pp. 209–229. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Comp. Sc. 126(2), 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bergstra, J.A., Middleburg, C.A.: Process algebra for hybrid systems. Theoretical Comp. Sc. 335(2-3), 215–280 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cho, K.-H., Johansson, K.H., Wolkenhauer, O.: A hybrid systems framework for cellular processes. Biosystems 80(3), 273–282 (2005)CrossRefGoogle Scholar
  7. 7.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall, Sydney, Australia (1971)zbMATHGoogle Scholar
  8. 8.
    Corbett, J.M.: Designing hybrid automated manufacturing systems: A european perspective. In: Conference on Ergonomics of Hybrid Automated Systems I, pp. 167–172. Elsevier, Amsterdam (1988)Google Scholar
  9. 9.
    Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic agents. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  11. 11.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. of the IEEE 88(7), 985–1010 (2000)CrossRefGoogle Scholar
  12. 12.
    Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans. Comp. Logic 7(4), 798–833 (2006)Google Scholar
  13. 13.
    Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the european train control system. In: FMCAD 2006, pp. 76–77. IEEE Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Henzinger, T.A.: The theory of hybrid automata. In: Kemal, M. (ed.) IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278–292. IEEE Press, Los Alamitos (1996): Extended Version: Kemal, M.: Verification of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Sciences, vol. 170, pp. 265–292. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Henzinger, T.A., Horowitz, B., Majumdar, R.: Rectangular hybrid games. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 320–335. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Majumdar, R.: Symbolic model checking for rectangular hybrid systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 142–156. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Höfner, P., Möller, B.: Towards an algebra of hybrid systems. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 121–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Höfner, P., Möller, B.: An algebra of hybrid systems. Technical Report 2007-08, Institut für Informatik, Universität Augsburg (2007)Google Scholar
  19. 19.
    Höfner, P., Struth, G.: January 14 (2008),
  20. 20.
    Höfner, P., Struth, G.: Automated reasoning in Kleene algebra. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Höfner, P., Struth, G.: Can refinement be automated? In: Boiten, E., Derrick, J., Smith, G. (eds.) Refine 2007. ENTCS, Elsevier, Amsterdam (to appear, 2007)Google Scholar
  22. 22.
    Kahl, W.: Calculational relation-algebraic proofs in Isabelle/Isar. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 179–190. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Kozen, D.: Kleene algebra with tests. Trans. Prog. Languages and Systems 19(3), 427–443 (1997)CrossRefGoogle Scholar
  24. 24.
    McCune, W.: Prover9 and Mace4,
  25. 25.
    Möller, B.: Kleene getting lazy. Sc. Comp. Prog. 65, 195–214 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    Müller, O., Stauner, T.: Modelling and verification using linear hybrid automata – A case study. Math. and Comp. Modelling of Dynamical Systems 6(1), 71–89 (2000)CrossRefzbMATHGoogle Scholar
  27. 27.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: FLoC 2006, CEUR Workshop Proceedings, vol. 192, pp. 18–33 (2006)Google Scholar
  28. 28.
    Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press (2001)Google Scholar
  29. 29.
    Struth, G.: Calculating Church-Rosser proofs in Kleene algebra. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 276–290. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Sutcliffe, G., Yury, P.: SRASS-A semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter Höfner
    • 1
  1. 1.Institut für InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations