Advertisement

Service Robots and Automation for the Disabled/Limited

  • Birgit Graf
  • Harald Staab
Part of the Springer Handbooks book series (SHB)

Abstract

The increasing number of elderly people is resulting in increased demand for new solutions to support self-initiative and independent life. Robotics and automation technologies, initially applied in industrial environments only, are starting to move into our everyday lives to provide support and enhance the quality of our lives. This chapter analyzes the needs of disabled or limited persons and discusses possible tasks of new assistive service robots. It further gives an overview of existing solutions available as prototypes or products. Existing technologies to assist disabled or limited persons can be grouped into stand-alone devices operated by the user explicitly such as robotic walkers, wheelchairs, guidance robots or manipulation aids, and wearable devices that are attached to the user and operated implicitly by measuring the desired limb motion of the user such as in orthoses, exoskeletons or prostheses. Two recent developments are discussed in detail as application examples: the robotic home assistant Care-O-bot and the bionic robotic arm ISELLA. One of the most important challenges for future developments is to reduce costs in order to make assistive technologies available to everybody. On the technological side, user interfaces need to be designed that allow the use of the machines even by persons who have no technical knowledge and that enable new tasks to be taught to assistive robots without much effort. Finally, safe manipulation of assistive robots among humans must be guaranteed by new sensors and corresponding safety standards.

Keywords

Mobile Robot Humanoid Robot Service Robot Wearable Device Gait Rehabilitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

3-D

three-dimensional

AGV

autonomous guided vehicle

ASIMO

advanced step in innovation mobility

DC

direct-current

DOF

degrees of freedom

EAP

electroactive polymer

ICORR

International Conference on Rehabilitation Robotics

ICRA

International Conference on Robotics and Automation

IPA

intelligent parking assist

IROS

Intelligent Robots and Systems

ISELLA

intrinsically safe lightweight low-cost arm

MAN

metropolitan area network

MVFH

minimum vector field histogram

OBB

oriented bounding box

OMNI

office wheelchair with high manoeuvrability and navigational intelligence

PC

personal computer

ProVAR

professional vocational assistive robot

RA

resolution advisory

RAID

redundant array of independent disk

RAID

robot to assist the integration of the disabled

RT

radiotherapy

RT

register transfer

SIFT

scale-invariant feature transform

SMA

shape-memory alloys

SVM

support vector machine

TV

television

References

  1. 84.1.
    Statistisches Bundesamt Deutschland: 11. koordinierte Bevölkerungsvorausberechnung (2006) www.destatis.de (last accessed February 1, 2007)
  2. 84.2.
    N.I. Katevas: Mobile robots in healthcare: the past, the present and the future. In: Mobile Robots in Healtcare, ed. by N.I. Katevas (IOS, Athens 2001) pp. 1–16Google Scholar
  3. 84.3.
    B. Siciliano, O. Khatib (Eds.): Springer Handbook of Robotics (Springer, Berlin, Heidelberg 2008)zbMATHGoogle Scholar
  4. 84.4.
    H.F.M. van der Loos, D.J. Reinkensmeyer: Rehabilitation and health care robotics. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008)Google Scholar
  5. 84.5.
    C. Huang, G. Wasson, M. Alwan, P. Sheth, A. Ledoux: Shared navigational control and user intent detection in an intelligent walker, Proc. AAAI Fall 2005 Symp. (EMBC) (2005)Google Scholar
  6. 84.6.
    G. Lacey, K.M. Dawson-Howe: Personal adaptive mobility aid for frail and elderly blind people, Tech. Rep. TR-CS-95-18 (Comp. Science Dept. School of Engineering, Trinity College Dublin 1995)Google Scholar
  7. 84.7.
    Y. Hirata, A. Hara, A. Muraki, K. Kosuge: Passive-type intelligent walker RT walker, Proc. IEEE Int. Conf. Robot. Autom. (Orlando 2006)Google Scholar
  8. 84.8.
    D. Rodríguez-Losada, F. Matía, A. Jiménez, R. Galán, G. Lacey: Guido, the robotic smart walker for the frail visually impaired, 1st Int. Congr. Domotics Robot. Remote Assistance All – DRT4all 2005 (Act Book, Madrid 2005) pp. 155–169Google Scholar
  9. 84.9.
    N. Nejatbakhsh, K. Kosuge: User-environment based navigation algorithm for an omnidirectional passive walking aid system, Proc. 9th Int. Conf. Rehab. Robot. (Chicago 2005)Google Scholar
  10. 84.10.
    J. Glover, D. Holstius, M. Manojlovich, K. Montgomery, A. Powers, J. Wu, S. Kiesler, J. Matthews, S. Thrun: A robotically-augmented walker for older adults, Tech. Rep. CMU-CS-03-170 (Carnegie Mellon Univ. Comp. Science Dep., Pittsburgh 2003)Google Scholar
  11. 84.11.
    H.M. Shim, E.H. Lee, J.H. Shim, S.M. Lee, S.H. Hong: Implementation of an intelligent walking assistant robot for the elderly in outdoor environment, Proc. 9th Int. Conf. Rehab. Robot. (Chicago 2005)Google Scholar
  12. 84.12.
    S. Egawa, I. Takeuchi, A. Koseki, T. Ishii: Electrically assisted walker with supporter-embedded force-sensing device. In: Advances in Rehabilitation Robotics, Lecture Notes in Control and Information Science, Vol. 306 (Springer, Berlin, Heidelberg 2004) pp. 313–322CrossRefGoogle Scholar
  13. 84.13.
    H. Yu, M. Spenko, S. Dubowsky: An adaptive shared control system for an intelligent mobility aid for the elderly, Auton. Robots 16(15), 53–66 (2003)CrossRefGoogle Scholar
  14. 84.14.
    A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J. Matthews, J. Dunbar-Jacobs, S. Thrun: A robotic walker that provides guidance, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (Taipei 2003)Google Scholar
  15. 84.15.
    P. Médéric, V. Pasqui, F. Plumet, P. Bidaud: Elderly people sit to stand transfer experimental analysis, Proc. 8th Int. Conf. Climb. Walk. Robots (CLAWAR 2005) (2005) pp. 953–960Google Scholar
  16. 84.16.
    C. Bühler, H. Heck, J. Nedza, R. Wallbruchr: Evaluation of the MOBIL walking and fifting aid. In: Assistive Technology Added Value to the Quality of Life, ed. by C. Marincek, C. Bühler, H. Knops, R. Andrich (IOS, Washington 2001) pp. 210–215Google Scholar
  17. 84.17.
    O. Chuy Jr., Y. Hirata, Z. Whand, K. Kosuge: Approach in assisting a sit-to-stand movement using robotic walking support system, IEEE/RSJ Int. Conf. Intell. Robots Syst. (Beijing 2006) pp. 4343–4348Google Scholar
  18. 84.18.
    A.M. Sabatini, V. Genovese, E. Pacchierotti: A mobility aid for the support to walking and object transportation of people with motor impairments, Proc. IEEE/RSJ Intl. Conf. Int. Robots Syst. (2002)Google Scholar
  19. 84.19.
    R.A. Cooper: Intelligent control of power wheelchairs, Eng. Med. Biol. Mag. 14(4), 423–431 (1995)CrossRefGoogle Scholar
  20. 84.20.
    S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, J. Borenstein: The NavChair assistive wheelchair navigation system, IEEE Trans. Rehab. Eng. 7(4), 443–451 (1999)CrossRefGoogle Scholar
  21. 84.21.
    G. Bourhis, O. Horn, O. Habert, A. Pruski: An autonomous vehicle for people with motor disabilities, IEEE Robot. Autom. Mag. 8(1), 20–28 (2001)CrossRefGoogle Scholar
  22. 84.22.
    S.P. Parikh, V. Grassi Jr., V. Kumar, J. Okamoto Jr.: Incorporating user inputs in motion planning for a smart wheelchair, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 2043–2048Google Scholar
  23. 84.23.
    E. Prassler, J. Scholz, P. Fiorini: A robotic wheelchair for crowded public environments, IEEE Robot. Autom. Mag. 8(1), 38–45 (2001)CrossRefGoogle Scholar
  24. 84.24.
    H.A. Yanco: Shared User-Computer Control of a Robotic Wheelchair System. Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 2000)Google Scholar
  25. 84.25.
    R.A. Brooks: A Robust Layered Control System for a Mobile Robot (A.I. Memo 864, Massachusetts Institute of Technology, Artificial Intelligence Laboratory 1985)Google Scholar
  26. 84.26.
    T. Röfer, A. Lankenau: Ein Fahrassistent für ältere und behinderte Menschen, Auton. Mobile Syst. 15, 334–343 (1999), in GermanGoogle Scholar
  27. 84.27.
    G. Pires, R. Araujo, U. Nunes, A.T. de Almeida: ROBCHAIR – a powered wheelchair using a behaviour-based navigation, 5th Int. Workshop Adv. Motion Control (Coimbra 1998) pp. 536–541Google Scholar
  28. 84.28.
    D. Vanhooydonck, E. Demeester, M. Nuttin, H. Van Brussel: Shared control for intelligent wheelchairs: an implicit estimation of the user intention, ASERʼ03 1st Int. Workshop Adv. Serv. Robot. (2003) pp. 176–182Google Scholar
  29. 84.29.
    H. Hoyer: The OMNI wheelchair, Serv. Robot Int. J. 1(1), 26–29 (1995)Google Scholar
  30. 84.30.
    Toyota Motor Corporation: Robot Technology, http://www.toyota.co.jp/en/tech/robot/ (last accessed February 17, 2009)
  31. 84.31.
    S. Shoval, I. Ulrich, J. Borenstein: NavBelt and the GuideCane, IEEE Robot. Autom. Mag. 10(1), 9–20 (2003)CrossRefGoogle Scholar
  32. 84.32.
    M. Montemerlo, J. Pineau, N. Roy, S. Thrun, V. Verma: Experiences with a mobile robotic guide for the elderly, Proc. AAAI Natl. Conf. Artif. Intell. (2002)Google Scholar
  33. 84.33.
    B. Graf, O. Barth: Entertainment robotics: examples, key technologies and perspectives, Robots in Exhibitions, Proc. Workshop WS9 (Lausanne 2002)Google Scholar
  34. 84.34.
    H.F.M. van der Loos, J.J. Wagner, N. Smaby, K.S. Chang, O. Madrigal, L.J. Leifer, O. Khatib: ProVAR assistive robot system architecture, Proc. ICRA (Detroit 1999) pp. 741–746Google Scholar
  35. 84.35.
    T. Jones: RAID – toward greater independence in the office and home environment, Proc. 6th Int. Conf. Rehab. Robot. (ICORRʼ99) (Stanford 1999)Google Scholar
  36. 84.36.
    Rehab Robotics Ltd: Handy1, http://ourworldcompuserve.com/homepages/rehabrobotics/Hand1.htm (last accessed February 17, 2009)
  37. 84.37.
    Exact Dynamics BV: ARM: Assistent Robot Manipulator, http://www.exactdynamics.nl/ (last accessed February 17, 2009)
  38. 84.38.
    American Honda Motor Co. Inc.: ASIMO, http://asimo.honda.com (last accessed February 17, 2009)
  39. 84.39.
    Kawada Industries, Inc.: Humanoid Robot HRP-2 “Promet”, http://www.kawada.co.jp/global/ams/hrp_2.html (last accessed February 17, 2009)
  40. 84.40.
    Sarcos Inc.: High-performace humanoid robot, http://www.sarcos.com/telespec.atr.html (last accessed February 17, 2009)
  41. 84.41.
    P. Dario, E. Guglielmelli, C. Laschi, G. Teti (SSSA): MOVAID: a personal robot in everyday life of disabled and elderly people, Technol. Disabil. J. 10, 77–93 (1999)Google Scholar
  42. 84.42.
    R. Bischoff: HERMES – a humanoid experimental robot for mobile manipulation and exploration services. Video Proc, IEEE Int. Conf. Robot. Autom. ICRA ʼ01 (Seoul 2001), III–1Google Scholar
  43. 84.43.
    Universität Karlsruhe, Institut für Technische Informatik: SFB 588 Humanoide Roboter – Lernende und kooperierende multimodale Roboter, http://www.sfb588.uni-karlsruhe.de (last accessed February 17, 2009)
  44. 84.44.
    Fraunhofer IPA: Care-O-bot, http://www.care-o-bot.de (last accessed February 17, 2009)
  45. 84.45.
    Hitachi, Ltd.: Robotics, http://www.hitachi.com/rd/research/robotics.html (last accessed February 17, 2009)
  46. 84.46.
    Yaskawa Electric Corporation: Yaskawa develops a service robot “SmartPal V (SmartPal Five)”. Press release November 28, 2007 http://www.yaskawa.co.jp/en/newsrelease/2007/04.htm
  47. 84.47.
    Fujitsu Frontech Ltd.: Fujitsu Service Robot (enon), http://www.frontech.fujitsu.com/en/forjp/robot/servicerobot/ (last accessed February 17, 2009)
  48. 84.48.
    D.H. Plettenburg: Basic requirements for upper extremity prostheses: the WILMER approach, Proc. 20th IEEE Int. Conf. Eng. Med. Biol. Soc. 5, 2276–2281 (1998)Google Scholar
  49. 84.49.
    P. Berkelman, T. Lu, J. Ma, P. Rossi: Passive orthosis linkage for locomotor rehabilitation, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 425–431Google Scholar
  50. 84.50.
    D. Odell, A. Barr, R. Goldberg, J. Chung, D. Rempel: Evaluation of a dynamic arm support for seated and standing tasks: a laboratory study of electromyography and subjective feedback, J. Ergon. 50(4), 520–535 (2007)CrossRefGoogle Scholar
  51. 84.51.
    A.H.A. Stienen, E.E.G. Hekman, F.C.T. Van der Helm, G.B. Prange, M.J.A. Jannink, A.M.M. Aalsma, H. Van der Kooij: Freebal: dedicated gravity compensation for the upper extremities, Proc. Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 804–808Google Scholar
  52. 84.52.
    A. Jackson, P. Culmer, S. Makower, M. Levesley, R. Richardson, A. Cozens, M. Mon Williams, B. Bhakta: Initial patient testing of iPAM – a robotic system for stroke rehabilitation, Proc. 10th Int. Conf. Rehab. Robot. ICORR (Noordwijk 2007)Google Scholar
  53. 84.53.
    H. Hirai, R. Ozawa, S. Goto, H. Fujigaya, S. Yamasaki, Y. Hatanaka, S. Kawamura: Development of an ankle-foot orthosis with a pneumatic passive element, Proc. 15th IEEE Int. Symp. Robot Human Interact. Commun. (RoMan 06) (2006) pp. 220–225Google Scholar
  54. 84.54.
    P. Beyl, J. Naudet, R. Van Ham, D. Lefeber: Mechanical design of an active knee orthosis for gait rehabilitation, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 100–105Google Scholar
  55. 84.55.
    Fraunhofer IPK: Rehabilitation Robotics, http://www.ipk.fraunhofer.de/rehabrobotics (last accessed February 17, 2009)
  56. 84.56.
    D. Surdilovic, R. Bernhardt, T. Schmidt, J. Zhang: STRING-MAN: a novel wire-robot for gait rehabilitation, Advances in Rehabilitation Robotics. In: Advances in Rehabilitation Robotics, Lecture Notes in Control and Information Science, Vol. 306 (Springer, Berlin, Heidelberg 2004) pp. 413–426CrossRefGoogle Scholar
  57. 84.57.
    L. Luenenburger, G. Colombo, R. Riener: Biofeedback for robotic gait rehabilitation, J. NeuroEng. Rehab. 4(1), (2007), http://www.balgrist.ch/display.cfm?id=101935
  58. 84.58.
    S.K. Banala, S.K. Agrawal, J.P. Scholz: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 401–407Google Scholar
  59. 84.59.
    Berkeley Robotics and Human Engineering Laboratory: BLEEX Project, http://bleex.me.berkeley.edu/bleex.htm (last accessed February 17, 2009)
  60. 84.60.
    University of Tsukuba, Cybernics Laboratory: Robot suit HAL (Hybrid Assistive Limb), http://sanlab.kz.tsukuba.ac.jp/english/r_hal.php (last accessed February 17, 2009)
  61. 84.61.
    Touch Bionics Inc. and Touch EMAS Ltd.: Touchbionics, http://www.touchbionics.com (last accessed February 17, 2009)
  62. 84.62.
    A. Kargov, C. Pylatiuk, S. Schulz, G. Bretthauer: Modularly designed lightweight anthropomorphic robot hand, Proc. IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (Heidelberg 2006) pp. 155–159Google Scholar
  63. 84.63.
    Otto Bock HealthCare GmbH: http://www.ottobock.de (last accessed February 17, 2009)
  64. 84.64.
    Ossur hf: POWER KNEE, http://www.ossur.com/bionictechnology/powerknee (last accessed February 17, 2009)
  65. 84.65.
    K.B. Fite, T.J. Withrow, K.W. Wait, M. Goldfarb: Liquid-fueled actuation for an anthropomorphic upper extremity prosthesis, Proc. 28th Annual Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS ʼ06 (2006) pp. 5638–5642Google Scholar
  66. 84.66.
    S.K. Au, J. Weber, H. Herr: Biomechanical design of a powered ankle-foot prosthesis, Proc. 10th Int. Conf. Rehab. Robot. ICORR 2007 (Noordwijk 2007) pp. 298–303Google Scholar
  67. 84.67.
    F. Sup, A. Bohara, M. Goldfarb: Design and control of a powered knee and ankle prosthesis, Proc. IEEE Int. Conf. Robot. Autom. (2007) pp. 4134–4139Google Scholar
  68. 84.68.
    R.D. Schraft, C. Schaeffer, T. May: The concept of a system for assisting elderly or disabled persons in home environments, Proc. 24th IEEE Int. Conf. Ind. Electron. Control Instrum. (IECON), Vol. 4 (Aachen 1998)Google Scholar
  69. 84.69.
    B. Graf, M. Hans, R.D. Schraft: Care-O-bot II – development of a next generation robotic home assistant, Auton. Robots 16(2), 193–205 (2004)CrossRefGoogle Scholar
  70. 84.70.
    M. Hans, B. Graf, R.D. Schraft: Robotic home assistant Care-O-bot: past-present-future, Proc. IEEE Int. Workshop Robot Human Interact. Commun. (RoMan) (Paris 2001) pp. 407–411Google Scholar
  71. 84.71.
    B. Graf: Dependability of mobile robots in direct interaction with humans. In: Advances in Human-Robot Interaction, Springer Tracts in Advanced Robotics, Vol. 14 (Springer, Berlin, Heidelberg 2005) pp. 223–239Google Scholar
  72. 84.72.
    J.-C. Latombe: Robot Motion Planning (Kluwer Academic, Boston 1996)Google Scholar
  73. 84.73.
    T. Oggier, M. Lehmann, R. Kaufmann, M. Schweizer, M. Richter, P. Metzler, G. Lang, F. Lustenberger, N. Blanc: An all-solid-state optical range camera for 3-D real-time imaging with sub-centimeter depth resolution SwissRangerTM, Proc. SPIE 5249, 534–545 (2003)CrossRefGoogle Scholar
  74. 84.74.
    M. Pontil, A. Verri: Support vector machines for 3-D object recognition, IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 637–646 (1998)CrossRefGoogle Scholar
  75. 84.75.
    J. Kubacki, W. Baum: Towards open-ended 3-D rotation and shift invariant object detection for robot companions, Proc. IEEE/RSJ Int. Conf. (IEEE, Piscataway 2006) pp. 3352–3357Google Scholar
  76. 84.76.
    B. Rohrmoser, C. Parlitz: Implementation of a path-planning algorithm for a robot arm, Robotik 2002: Leistungsstand, Anwendungen, Visionen, Trends (Ludwigsburg 2002), ed. by R. Dillmann et al., VDI/VDE-Gesellschaft Meß- und Automatisierungstechnik (GMA) (VDI Düsseldorf 2002) VDI Rep. 1679, pp. 59–64Google Scholar
  77. 84.77.
    C. Parlitz, W. Baum, U. Reiser, M. Hägele: Intuitive human–machine interaction and implementation on an household robot companion. In: Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design, Lecture Notes in Computer Science, Vol. 4557 (Springer, Berlin, Heidelberg 2007) pp. 922–929CrossRefGoogle Scholar
  78. 84.78.
    B. Graf, R.D. Schraft: Behavior-based path modification for shared control of robotic walking aids, 10th Int. Conf. Rehab. Robot. (Piscataway IEEE, Noordwijk 2007) pp. 317–322Google Scholar
  79. 84.79.
    C. Cocaud, A. Jnifene: Analysis of a two DOF anthropomorphic arm driven by artificial muscles, Proc. 2nd IEEE Int. Workshop Haptic Audio Vis. Env. Appl. (HAVE 2003) pp. 20–21Google Scholar
  80. 84.80.
    J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter: Artificial muscle technology: physical principles and naval prospects, IEEE J. Ocean. Eng. 29(3), 706–728 (2004)CrossRefGoogle Scholar
  81. 84.81.
    V. Nickel, J. Perry, A. Garrett: Development of useful function in the seveerely paralyzed hand, J. Bone Jt. Surg. 45A(5), 933–952 (1963)Google Scholar
  82. 84.82.
    I. Boblan, R. Bannasch, H. Schwenk, F. Prietzel, L. Miertsch, A. Schultz: A human-like robot hand and arm with fluidic muscles: biologically inspired construction and functionality. In: Embodied Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 3139 (Springer, Berlin, Heidelberg 2004) pp. 160–179CrossRefGoogle Scholar
  83. 84.83.
    Festo AG: Brochure Airacuda (Festo, Esslingen 2006), www.festo.com Google Scholar
  84. 84.84.
    C. Pfeiffer, K. DeLaurentis, C. Mavroidis: Shape memory alloy actuated robot prostheses: initial experiments, Proc. IEEE Int. Conf. Robot. Autom., Vol. 3 (1999) pp. 2385–2391Google Scholar
  85. 84.85.
    S. Arora, T. Gosh, J. Muth: Dielectric elastomer based prototype fiber actuators, Sens. Actuators A: Phys. 136(1), 321–328 (2006)CrossRefGoogle Scholar
  86. 84.86.
    H.R. Choi, K. Jung, S. Ryew, J.D. Nam, J.C. Koo, J. Jeon, K. Tanie: Biomimetic soft actuator: design, modeling, control, and applications, IEEE/ASME Trans. Mechatron. 10(5), 581–593 (2005)CrossRefGoogle Scholar
  87. 84.87.
    K. Takagi, M. Yamamura, Z.W. Luo, M. Onishi, S. Hirano, K. Asaka, Y. Hayakawa: Development of a Rajiform swimming robot using ionic polymer artificial muscles, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2006) pp. 1861–1866Google Scholar
  88. 84.88.
    T. Niino, S. Egawa, H. Kimura, T. Higuchi: Electrostatic artificial muscle: compact, high-power linear actuators with multiplelayer structures, Proc. IEEE Workshop Micro Electro Mechan. Syst. (1994)Google Scholar
  89. 84.89.
    K. Takemura, S. Yokota, K. Edamura: A micro artificial muscle actuator using electro-conjugate fluid, Proc. IEEE Int. Conf. (2005)Google Scholar
  90. 84.90.
    H. Staab, A. Sonnenburg: Studies and guidelines on the design of the DOHELIX technical muscle. In: Robotics and Applications, IRA 2007, 13th IASTED Int. Conf. (Würzburg 2007) (ACTA Press, Calgary 2007)Google Scholar
  91. 84.91.
    H. Staab, A. Sonnenburg, C. Hieger: The DOHELIX-muscle: a novel technical muscle for bionic robots and actuating drive applications, Autom. Sci. Eng. 3rd IEEE Conf. (Scottsdale 2007) pp. 306–311Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Robot SystemsFraunhofer IPAStuttgartGermany
  2. 2.Robotics and ManufacturingABB AG, Corporate Research Center GermanyLadenburgGermany

Personalised recommendations