Advertisement

Automation of Mobility and Navigation

  • Anibal Ollero
  • Ángel R. Castaño

Abstract

This chapter deals with general concepts on the automation of mobility and autonomous navigation. The emphasis is on the control and navigation of autonomous vehicles. Thus, after an introduction with historical background and basic concepts, the chapter briefly reviews general concepts on vehicle motion control by using models of the vehicle, as well as other approaches based on the information provided by humans. Autonomous navigation is also studied, involving not only motion planning and trajectory generation but also interaction with the environment to provide reactivity and adaptation in the autonomous navigation. These interactions are represented by means of nested loops closed at different frequencies with different bandwidth requirements. The human interactions at different levels are also analyzed, taking into account transmission of control commands and feedback of sensory information. Finally, the chapter studies multiple mobile systems by analyzing coordinated navigation of multiple autonomous vehicles and cooperation paradigms for autonomous mission execution.

Keywords

Global Position System Unmanned Aerial Vehicle Autonomous Underwater Vehicle Autonomous Vehicle Automate Guide Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2-D

two-dimensional

3-D

three-dimensional

AGV

autonomous guided vehicle

AI

artificial intelligence

AUV

autonomous underwater vehicle

DARPA

Defense Advanced Research Projects Agency

DGC

DARPA Grand Challenge

GPC

generalized predictive control

GPRS

general packet radio service

GPS

global positioning system

GSM

global system for mobile communication

LQG

linear-quadratic-Gaussian

LQR

linear quadratic regulator

MDP

Markov decision process

MEMS

micro-electromechanical system

PDA

personal digital assistant

PID

proportional, integral, and derivative

POMDP

partially observable Markov decision process

RAM

random-access memory

ROV

remotely operated underwater vehicle

RPV

remotely piloted vehicle

RRT

rapidly exploring random tree

SLAM

simultaneous localization and mapping technique

SRI

Stanford Research Institute

UAV

unmanned aerial vehicle

Wi-Fi

wireless fidelity

References

  1. 16.1.
    R. Marín, J. Garrido, J.L. Trillo, J. Sáez, J. Armesto: An industrial automated warehouse based on overhead trolleys, MCPLʼ97 IFAC/IFIP Conf. Manag. Control Prod. Logist. (Campinas, 1997) pp. 137–142Google Scholar
  2. 16.2.
    C.E. Thorpe (Ed.): Vision and Navigation: The Carnegie Mellon Navlab (Kluwer, Boston 1990)Google Scholar
  3. 16.3.
    M. Parent, A. de La Fortelle: Cybercars: past, present and future of the technology, Proc. ITS World Congr. (2005)Google Scholar
  4. 16.4.
    R. Horowitz, P. Varaiya: Control design of an automated highway system, Proc. IEEE 88(7), 913–925 (2000)CrossRefGoogle Scholar
  5. 16.5.
    UAV Forum: http://www.uavforum.com/ (last accessed March 5, 2009)
  6. 16.6.
    J. Moraleda, A. Ollero, M. Orte: A robotic system for internal inspection of water pipelines, IEEE Robot. Autom. Mag. 6(3), 30–41 (1999)CrossRefGoogle Scholar
  7. 16.7.
    H.M. Kim, J. Dickerson, B. Kosko: Fuzzy throttle and brake control for platoons of smart cars, Fuzzy Sets Syst. 84, 209–234 (1996)CrossRefGoogle Scholar
  8. 16.8.
    R.W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, ed. by R.S. Millman, R.W. Brockett, H.H. Sussmann (Birkhauser, Boston 1983)Google Scholar
  9. 16.9.
    C.Y. Chan, H.S. Tan: Feasibility analysis of steering control as a driver-assistance function in collision situations, IEEE Trans. Intell. Transp. Syst. 2(1), 1–9 (2001)CrossRefMathSciNetGoogle Scholar
  10. 16.10.
    J.H. Hahn, R. Rajamani, L. Alexander: GPS-based real-time identification of tire–road friction coefficient, IEEE Trans. Control Syst. Technol. 10(3), 331–343 (2002)CrossRefGoogle Scholar
  11. 16.11.
    B. Samadi, R. Kazemi, K.Y. Nikravesh, M. Kabganian: Real-time estimation of vehicle state and tire-road friction forces, Proc. Am. Control Conf. (Arlington 2001) pp. 3318–3323Google Scholar
  12. 16.12.
    J. Huang, J. Ahmed, A. Kojic, J.P. Hathout: Control oriented modeling for enhanced yaw stability and vehicle steerability, Proc. Am. Control Conf. (Boston 2004) pp. 3405–3410Google Scholar
  13. 16.13.
    A. Kamga, A. Rachid: Speed, steering angle and path tracking controls for a tricycle robot, Proc. IEEE Int. Symp. Computer-Aided Control Syst. Des. (Dearborn 1996) pp. 56–61Google Scholar
  14. 16.14.
    C. deWit, B. Siciliano, G. Bastin: Theory of Robot Control (Springer, Berlin Heidelberg 1997)Google Scholar
  15. 16.15.
    A. Ollero: Robótica. Manipuladores y Robots Móviles (Marcombo, Spain 2001), in SpanishGoogle Scholar
  16. 16.16.
    J. Wit, C.D. Crane, D. Armstrong: Autonomous ground vehicle path tracking, J. Robot. Syst. 21(8), 439–449 (2004)CrossRefGoogle Scholar
  17. 16.17.
    A. Rodríguez-Castaño, A. Ollero, B.M. Vinagre, Y.Q. Chen: Setup of a spatial lookahead path tracking controller, Proc. 16th IFAC World Congr. (Prague 2005)Google Scholar
  18. 16.18.
    T. Hellström, T. Johansson, O. Ringdahl: Development of an autonomous forest machine for path tracking, Springer Tracts Adv. Robot., Vol. 25 (Springer, Berlin Heidelberg 2006) pp. 603–614Google Scholar
  19. 16.19.
    G. Heredia, A. Ollero: Stability of autonomous vehicle path tracking with pure delays in the control loop, Adv. Robot. 21(1), 23–50 (2007)CrossRefGoogle Scholar
  20. 16.20.
    DARPA Grand Challenge: Special issue, J. Field Robot. 23(8/9), 461–835 (2006)Google Scholar
  21. 16.21.
    J.Y. Wang, M. Tomizuka: Robust H∞ lateral control for heavy-duty vehicles in automated highway systems, Proc. Am. Control Conf. (San Diego 1999) pp. 3671–3675Google Scholar
  22. 16.22.
    G.H. Elkaim, M. OʼConnor, T. Bell, B. Parkinson: System identification and robust control of farm vehicles using CDGPS, Proc. ION GPS-97 (Kansas City 1997) pp. 1415–1424Google Scholar
  23. 16.23.
    A. González-Cantos, A. Ollero: Backing-up maneuvers of autonomous tractor-trailer vehicles using the qualitative theory of nonlinear dynamical systems, Int. J. Robot. Res. 28(1), 49–65 (2009)CrossRefGoogle Scholar
  24. 16.24.
    A. Astolfi, P. Bolzern, A. Locatelli: Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach, IEEE Trans. Robot. Autom. 20(1), 154–160 (2004)CrossRefGoogle Scholar
  25. 16.25.
    A. Ollero, L. Merino: Control and perception techniques for aerial robotics, Annu. Rev. Control 28, 167–178 (2004)CrossRefGoogle Scholar
  26. 16.26.
    O. Amidi, T. Kanade, K. Fujita: A visual odometer for autonomous helicopter flight, Robot. Auton. Syst. 28, 185–193 (1999)CrossRefGoogle Scholar
  27. 16.27.
    M. Bejar, A. Ollero, F. Cuesta: Modeling and control of autonomous helicopters. In: Advances in Control Theory and Application, Lect. Notes Control Inf. Sci., Vol. 353, ed. by C. Bonivento, A. Isidori, L. Marconi, C. Rossi (Springer, Berlin Heidelberg 2007) pp. 1–27CrossRefGoogle Scholar
  28. 16.28.
    AWARE Project: http://www.aware-project.net (last accessed March 5, 2009)
  29. 16.29.
    A. Ollero, A. García-Cerezo, J.L. Martínez, A. Mandow: Fuzzy tracking methods for mobile robots. In: Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems, Vol. 9, ed. by M. Jamshidi, L. Zadeh, A. Titli, S. Boverie (Prentice Hall, Upper Saddle River 1997) pp. 347–364, Chap. 17Google Scholar
  30. 16.30.
    G. Buskey, G. Wyeth, J. Roberts: Autonomous helicopter hover using an artificial neural network, Proc. IEEE Int. Conf. Robot. Autom. (2001) pp. 1635–1640Google Scholar
  31. 16.31.
    A. Ollero, A. Rodríguez-Castaño, G. Heredia: Analysis of a GPS-based fuzzy supervised path tracking system for large unmanned vehicles, Proc. 4th IFAC Int. Symp. Intell. Compon. Instrum. Control Appl. (SICICA) (Buenos Aires 2000) pp. 141–146Google Scholar
  32. 16.32.
    F. Conticelli, D. Prattichizzo, F. Guidi, A. Bicchi: Vision-based dynamic estimation and set-point stabilization of nonholonomic vehicles, Proc. 2000 IEEE Int. Conf. Robot. Autom. (San Francisco 2000) pp. 2771–2776Google Scholar
  33. 16.33.
    J. González, A. Stenz, A. Ollero: A mobile robot iconic position estimator using a radial laser scanner, J. Intell. Robot. Syst. 13, 161–179 (1995)CrossRefGoogle Scholar
  34. 16.34.
    M. Buehler, K. Iaguemma, S. Singh: The 2005 DARPA Grand Challenge, Springer Tracts Adv. Robot., Vol. 36 (Springer, Berlin Heidelberg 2007)CrossRefGoogle Scholar
  35. 16.35.
    DARPA Urban Challenge: http://www.darpa.mil/grandchallenge/images/photos/11_4_07/D2X_1328.jpg (last accessed March 5, 2009)
  36. 16.36.
    S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics, Intelligent Robotics and Autonomous Agents (MIT Press, Cambridge 2005)Google Scholar
  37. 16.37.
    R.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)Google Scholar
  38. 16.38.
    S.M. LaValle: Rapidly-exploring random trees: A new tool for path planning TR 98-11 (Iowa Univ., Iowa 1998)Google Scholar
  39. 16.39.
    O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefMathSciNetGoogle Scholar
  40. 16.40.
    S.A. Masoud, A.A. Masoud: Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields: a physical metaphor, IEEE Trans. Syst. Man Cybern. Part A, 32(6), 705–723 (2002)CrossRefGoogle Scholar
  41. 16.41.
    V.F. Muñoz, A. Ollero, M. Prado, A. Simón: Mobile robot trajectory planning with dynamic and kinematic constraints, Proc. IEEE Int. Conf. Robot. Autom., San Diego (1994) pp. 2802–2807Google Scholar
  42. 16.42.
    F. Cuesta, A. Ollero: Intelligent mobile robot navigation, Springer Tracts Adv. Robot., Vol. 16 (Springer, Berlin Heidelberg 2005)zbMATHGoogle Scholar
  43. 16.43.
    A. Mandow, J. Gomez de Gabriel, J.L. Martinez, V.F. Muñoz, A. Ollero, A. García-Cerezo: The autonomous mobile robot aurora for greenhouse operation, IEEE Robot. Autom. Mag. 3(4), 18–28 (1996)CrossRefGoogle Scholar
  44. 16.44.
    G.L. Calhoun, M.H. Draper, H.A. Ruff, J.V. Fontejon: Utility of a tactile display for cueing faults, Proc. Hum. Factors Ergon. Soc. 46th Annu. Meet. (2002) pp. 2144–2148Google Scholar
  45. 16.45.
    P. Daviet, M. Parent: Platooning for small public urban vehicles, 4th Int. Symp. Exp. Robot. (ISERʼ95) (Stanford 1995) pp. 345–354Google Scholar
  46. 16.46.
    J. Bom, B. Thuilot, F. Marmoiton, P. Martinet: Nonlinear control for urban vehicles platooning, relying upon a unique kinematic GPS, 22nd Int. Conf. Robot. Autom. (ICRAʼ05) (Barcelona 2005) pp. 4149–4154Google Scholar
  47. 16.47.
    Y. Zhang, E.B. Kosmatopoulos, P.A. Ioannou, C.C. Chien: Autonomous intelligent cruise control using front and back information for tight vehicle following maneuvers, IEEE Trans. Veh. Technol. 48(1), 319–328 (1999)CrossRefGoogle Scholar
  48. 16.48.
    T.S. No, K.-T. Chong, D.-H. Roh: A Lyapunov function approach to longitudinal control of vehicles in a platoon, IEEE Trans. Veh. Technol. 50(1), 116–124 (2001)CrossRefGoogle Scholar
  49. 16.49.
    J.P. Desai, J.P. Ostrowski, V. Kumar: Modeling and control of formations of nonholonomic mobile robots, IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  50. 16.50.
    M. Egerstedt, X. Hu, A. Stotsky: Control of mobile platforms using a virtual vehicle approach, IEEE Trans. Autom. Control 46, 1777–1782 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 16.51.
    T. Balch, R.C. Arkin: Behavior-based formation control for multi-robot teams, IEEE Trans. Robot. Autom. 14, 926–939 (1998)CrossRefGoogle Scholar
  52. 16.52.
    A. Ollero, I. Maza: Multiple Heterogeneous Aerial Vehicles, Springer Tracts Adv. Robot., Vol. 37 (Springer, Berlin Heidelberg 2007)CrossRefGoogle Scholar
  53. 16.53.
    I. Maza, A. Viguria, A. Ollero: Aerial and ground robots networked with the environment, Proc. Workshop Netw. Robot Syst. IEEE Int. Conf. Robot. Autom. (2005) pp. 1–10Google Scholar
  54. 16.54.
    Y.U. Cao, A.S. Fukunaga, A. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robots 4(1), 7–27 (1997)CrossRefGoogle Scholar
  55. 16.55.
    T. Schmitt, R. Hanek, M. Beetz, S. Buck, B. Radig: Cooperative probabilistic state estimation for vision-based autonomous mobile robots, IEEE Trans. Robot. Autom. 18(5), 670–684 (2002)CrossRefGoogle Scholar
  56. 16.56.
    S. Thrun: A probabilistic online mapping algorithm for teams of mobile robots, Int. J. Rob. Res. 20(5), 335–363 (2001)CrossRefGoogle Scholar
  57. 16.57.
    L. Merino, F. Caballero, J.R. Martínez-de Dios, J. Ferruz, A. Ollero: A cooperative perception system for multiple UAVs: application to automatic detection of forest fires, J. Field Robot. 23(3), 165–184 (2006)CrossRefGoogle Scholar
  58. 16.58.
    A. Ollero, S. Lacroix, L. Merino, J. Gancet, J. Wiklund, V. Remuss, I.V. Perez, L.G. Gutiérrez, D.X. Viegas, M.A. González, A. Mallet, R. Alami, R. Chatila, G. Hommel, F.J. Colmenero, B.C. Arrue, J. Ferruz, J.R. Martinez-de Dios, F. Caballero: Multiple eyes in the skies, IEEE Robot. Autom. 12(2), 46–57 (2005)CrossRefGoogle Scholar
  59. 16.59.
    K. Konolige, D. Fox, B. Limketkai, J. Ko, B. Stewart: Map merging for distributed robot navigation, IEEE Int. Conf. Intell. Robot. Syst. (2003) pp. 212–217Google Scholar
  60. 16.60.
    L. Merino, F. Caballero, J. Wiklund, A. Moe, J.R. Martínez-de Dios, P.-E. Forssen, K. Nordberg, A. Ollero: Vision-based multi-UAV position estimation, Robot. Autom. Mag. 13(3), 53–62 (2006)CrossRefGoogle Scholar
  61. 16.61.
    L.E. Parker: Alliance: An architecture for fault-tolerant multi-robot cooperation, IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)CrossRefGoogle Scholar
  62. 16.62.
    B.P. Gerkey, M.J. Mataric: A formal analysis and taxonomy of task allocation in multi-robot systems, Int. J. Robot. Res. 23(9), 939–954 (2004)CrossRefGoogle Scholar
  63. 16.63.
    S.C. Botelho, R. Alami: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement, Proc. IEEE Int. Conf. Robot. Autom. (Detroit 1999)Google Scholar
  64. 16.64.
    B. Gerkey, M. Mataric: Sold: Auction methods for multi-robot coordination, IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Departamento de Ingeniería de Sistemas y AutomáticaUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Ingeniería de Sistemas y AutomáticaUniversidad de SevillaSevillaSpain

Personalised recommendations