Mycorrhiza pp 149-159 | Cite as

Ectomycorrhiza and Water Transport

  • Žaklina Marjanović
  • Uwe Nehls

In temperate and boreal regions, seasons are characterized by two major factors — temperature and water availability. As water availability is affecting essential processes like nutrition and photosynthesis, it is of central importance for plant physiology.

Trees and shrubs of temperate and boreal forest ecosystems are characterized by a tight association of their fine roots with certain soil fungi, forming a new symbiotic organ – the ectomycorrhiza. Here, fine roots are often covered by fungal hyphae (the so-called sheath) isolating them from the surrounding soil. Furthermore, fungal hyphae grow within the apoplast of rhizodermis and root cortex, forming a dense hyphal network (Hartig net), which is thought to function as an interface between fungus and plant for the reciprocal exchange of nutrients and metabolites. Mycorrhizas are connected with other parts of the fungal colony (e.g., soil exploring mycelium) by specialized transport hyphae (see below) and, in contrast to a number of well investigated filamentous model ascomycetes (e.g., Neurospora, Aspergillus), EM fungal colonies perform intense nutrient and metabolite exchange (for reviews, see Smith and Read 1997; Anderson and Cairney 2007).


Fine Root Water Transport Ectomycorrhizal Fungus Hydraulic Lift Aquaporin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agerer, R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107-114CrossRefGoogle Scholar
  2. Anderson IC, Cairney JWG. 2007. Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388-406CrossRefPubMedGoogle Scholar
  3. Azaizeh H, Gunse B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886-894CrossRefPubMedGoogle Scholar
  4. Bending GD & Read DJ. (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401-409CrossRefGoogle Scholar
  5. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565-570CrossRefPubMedGoogle Scholar
  6. Boyd R, Furbank RT, Read DJ (1986) Ectomycorrhiza and the water relations of trees. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 689-693Google Scholar
  7. Boyle CD, Hellenbrand KE (1990) Assesment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot 69:1764-1771CrossRefGoogle Scholar
  8. Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433-443CrossRefGoogle Scholar
  9. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151-161CrossRefGoogle Scholar
  10. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206-1215CrossRefPubMedGoogle Scholar
  11. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749-64CrossRefPubMedGoogle Scholar
  12. Chrispeels MJ, Agre P (1994) Aquaporins: Water channel proteins of plant and animal cells. Trends in Biochemical Sciences 19(10):421-425CrossRefPubMedGoogle Scholar
  13. Coleman MD, Bledsoe CS, Smit BA (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115:275-284CrossRefGoogle Scholar
  14. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565-574Google Scholar
  15. Dixon RK, Wright GM, Behrns GT, Teskey RO, Hinckley TM (1980) Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res 10:545-548CrossRefGoogle Scholar
  16. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834-835CrossRefGoogle Scholar
  17. Frettinger, P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmuller R, Martin F, Buscot F (2007) Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta 225:331-40CrossRefPubMedGoogle Scholar
  18. Friedrich A (1998) Regulation des Kohlenhydratstoffwechsels in Blättern mykorrhizierter Fichten (Picea abies [L.] Karst.) und Zitterpappeln (Populus tremula x tremuloides Mich.) unter erhöhter CO2-Konzentration. Thesis, Physiologische Ökologie der Pflanzen, TübingenGoogle Scholar
  19. Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71-81CrossRefPubMedGoogle Scholar
  20. Guerrero FD, Jones JT, Mullet JE (1990) Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol 15:11-26CrossRefPubMedGoogle Scholar
  21. Horton JL, Hart SC (1998) Hydraulic lift: a potentially important ecosystem process. Trends Ecol Evol 13:232-235CrossRefGoogle Scholar
  22. Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814-5820PubMedGoogle Scholar
  23. Jany JL, Bousquet J, Khasa DP (2003) Microsatellite markers for Hebeloma species developed from expressed sequence tags in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Ecol Notes 3:659-661CrossRefGoogle Scholar
  24. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjöval S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358-1369CrossRefPubMedGoogle Scholar
  25. Johansson T, Le Quere A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlen M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microb Interact 17:202-215CrossRefGoogle Scholar
  26. Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134-1141CrossRefPubMedGoogle Scholar
  27. Kaldenhoff R, Kolling A, Richter G (1993) A novel blue light-and abscisic acid-inducible gene of Arabidopsis thaliana encoding an intrinsic membrane protein. Plant Mol Biol 23:1187-1198CrossRefPubMedGoogle Scholar
  28. Kennedy PG, Peay KG (2007) Different soil moisture conditions change the outcome of the ecto-mycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291:155-165CrossRefGoogle Scholar
  29. Kohler A, Delaruelle C, Martin D, Encelot N, Martin F (2003) The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett 542:37-41CrossRefPubMedGoogle Scholar
  30. Kottke I, Münzenberger B, Oberwinkler F (1997) Structural approach to function in ectomycorrhizae. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees - contribution to modern tree physiology. Backhuys, Leiden, pp 357-376Google Scholar
  31. Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil water potential at the soil root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231-244PubMedGoogle Scholar
  32. Landhäusser SM, Muhsin TM, Zwiazek JJ (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684-689CrossRefGoogle Scholar
  33. Le Quere A, Wright D, Söderström B, Tunlid A (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. Mol Plant Microb Interact 18:659-673CrossRefGoogle Scholar
  34. Lehto T (1992a) Mycorrhiza and drought resistance of Picea sitchensis (Bong.) carr. I. In conditions of nutrient deficiency. New Phytol 122:661-668Google Scholar
  35. Lehto T (1992b) Mycorrhizas and drought resistance of Picea sitchensis (Bong.) carr. II. In conditions of adequate nutrition. New Phytol 122:669-673Google Scholar
  36. Loewe A, Einig W et al. (2000) Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145:565-574CrossRefGoogle Scholar
  37. Luu D-T, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85-96.CrossRefGoogle Scholar
  38. Marjanovic Ž (2004) Impact of mycorrhiza formation and drought stress on the expression and function of aquaporins in Norway spruce (Picea abies (L.) Karst.) and hybrid aspen (Populus tremula L. x Populus tremuloides Mich.) PhD Thesis, Karl-Eberhard Universität Tübingen, GermanyGoogle Scholar
  39. Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weia M, Hampp R, Nehls U (2005a) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258-268CrossRefPubMedGoogle Scholar
  40. Marjanovic Z, Nehls U, Hampp R (2005b) Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Ann NY Acad Sci 1048:496-499CrossRefPubMedGoogle Scholar
  41. Maurel C, Chrispeels JM (2001) Aquaporins - a molecular entry into plant water relations. Plant Physiol 125:135-138CrossRefPubMedGoogle Scholar
  42. Mexal J, Reid CPP (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51:1579-1588CrossRefGoogle Scholar
  43. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357-423Google Scholar
  44. Muhsin TM, Zwiazek JJ (2002a) Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153-158CrossRefGoogle Scholar
  45. Muhsin TM, Zwiazek JJ (2002b) Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil 238:217-225CrossRefGoogle Scholar
  46. Nardini A, Salleo S, Lo Gullo MA, Pitt F (2000) Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139-147CrossRefGoogle Scholar
  47. Parke JL, Linderman RG, Black CH (1983) The role of mycorrhizas in drought tolerance of Douglasfir seedlings. New Phytol 95:83-95CrossRefGoogle Scholar
  48. Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301-309CrossRefGoogle Scholar
  49. di Pietro M, Churin JL, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza (in press)Google Scholar
  50. Phillips AL, Huttly AK (1994) Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, TIP, is increased by GA 3. Plant Mol Biol 24:603-615CrossRefPubMedGoogle Scholar
  51. Pigott CD (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92:513-517CrossRefGoogle Scholar
  52. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385-387CrossRefPubMedGoogle Scholar
  53. Queretejeta JF, Egerton-Warburton LI, Allen MI (2003) direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55-64CrossRefGoogle Scholar
  54. Rousseau BVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639-644CrossRefGoogle Scholar
  55. Sands R, Theodorou C (1978) Water uptake by mycorrhizal roots of Radiata pine seedlings. Aust J Plant Physiol 5:301-309CrossRefGoogle Scholar
  56. Sands R, Fiscus EL, Reid CPP (1982) Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. Aust J Plant Physiol 9:559-569CrossRefGoogle Scholar
  57. Schreiber L, Franke R, Hartmann K-D, Ranathunge K, Steudle E (2005). The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) J Exp Bot 56:1427-1436CrossRefPubMedGoogle Scholar
  58. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, Calif.Google Scholar
  59. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775-788CrossRefGoogle Scholar
  60. Theodorou C (1978) Soil moisture and the mycorrhizal association of Pinus radiata D. Don. Soil Biol Biochem 10:33-37CrossRefGoogle Scholar
  61. Theodorou C, Bowen GD (1970) Mycorrhizal responses of radiata pine in experiments with different fungi. Aust For 34:183-191Google Scholar
  62. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596-1604CrossRefPubMedGoogle Scholar
  63. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734-737CrossRefPubMedGoogle Scholar
  64. Uhlig SK (1972) Untersuhungen zur Trockenresistenz mycorrhizabildender Pilze. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg B 127:124-133Google Scholar
  65. Unestam T (1991) Water repellency, mat formation and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13-20CrossRefGoogle Scholar
  66. Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301-311CrossRefGoogle Scholar
  67. Weig AR, Jakob C (2000) Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. FEBS Lett 481:293-298CrossRefPubMedGoogle Scholar
  68. Wright DP, Scholes JD, Read DJ, Rolfe SA (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant Cell Environ 23:39-49CrossRefGoogle Scholar
  69. Yamada S, Katsuhara M, Kelly WB, Michalovski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7:1129-1142CrossRefPubMedGoogle Scholar
  70. Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217-224Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institute for Multidisciplinary ResearchBeogradSerbia
  2. 2.Physiologische Ökologie der PflanzenEberhard-Karls-Universität TübingenTübingenGermany

Personalised recommendations