Mycorrhiza pp 307-320 | Cite as

The Biocontrol Effect of Mycorrhization on Soilborne Fungal Pathogens and the Autoregulation of the AM Symbiosis: One Mechanism, Two Effects?

  • H. Vierheilig
  • S. Steinkellner
  • T. Khaosaad
  • J. M. Garcia-Garrido

The establishment of the AM in the roots of more than 80% of all land plants is the result of a complex exchange of signals between the host plant and AMF. Many reports are available that once the AMF has penetrated the host root and established its interradical organs of nutrient exchange between the AMF and the plant, a number of physiological and morphological changes occur in the host plant.

In recent years, it has been reported that once plants are colonized by AMF, further root colonization by AMF is regulated (reviewed by Vierheilig 2004a,b). In analogy to the rhizobial autoregulatory mechanism in legume plants, this phenomenon with AMF has been named “autoregulation of mycorrhization”. Recently, it has been suggested that the bioprotective effect of mycorrhization and the autoregulation of mycorrhization are possibly two sides of the same coin. It seems plausible that an already mycorrhizal plant develops just one mechanism to repulse further colonization by fungi, not discriminating between AMF and soilborne pathogenic fungi (Vierheilig and Piché 2002; Vierheilig 2004a,b).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azcón-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Switzerland, pp 187-197Google Scholar
  2. Bago B, Vierheilig H, Piché Y, Azcon C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273-280CrossRefGoogle Scholar
  3. Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281-293PubMedGoogle Scholar
  4. Blilou I, Bueno P, Ocampo JA, García-Garrido JM (2000a) Induction of catalase and ascorbate peroxidase activities in tobaccco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 104:722-725.CrossRefGoogle Scholar
  5. Blilou I, Ocampo JA, García-Garrido JM. 2000b. Induction of Ltp (Lipid transfer protein) and Pal (Phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969-1977CrossRefPubMedGoogle Scholar
  6. Caron M, Fortin JA, Richard C (1986a) Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can J Plant Pathol 8:12-16Google Scholar
  7. Caron M, Fortin JA, Richard C (1986b) Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology 76:942-946CrossRefGoogle Scholar
  8. Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481-1487CrossRefPubMedGoogle Scholar
  9. Catford JG, Staehelin C, Larose G, Piché Y, Vierheilig H (2006) Systemically suppressed isofla-vonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257-266CrossRefGoogle Scholar
  10. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hair, and of essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485-494CrossRefPubMedGoogle Scholar
  11. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1998a) Colonization pattern of root tissue by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato Plant Soil 185:223-232CrossRefGoogle Scholar
  12. Cordier C, Pozo M J, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998b) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus Mol Plant Microb Interact 11:1017-1028CrossRefGoogle Scholar
  13. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525-533CrossRefGoogle Scholar
  14. García-Garrido JM, Ocampo JA (1989) Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol Biochem 21:65-167CrossRefGoogle Scholar
  15. García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377-1386CrossRefPubMedGoogle Scholar
  16. Garcia Garrido JM, Vierheilig H (2007) From a germinating spore to an established arbuscular mycorrhiza: signalling and regulation. In: Khasa D, Piché Y, Coughlan A (eds) Advances in mycorrhizal biotechnology: a Canadian perspective. NRC Research Press, Ottawa (in press)Google Scholar
  17. Graham JH, Menge JA (1982) Influence of vesicular-arbuscular mycorrhizae and soil phosphorous on take-all disease of wheat. Phytopathology 72:95-98CrossRefGoogle Scholar
  18. Habte M, Zhang YC, Schmitt DP (1999) Effectiveness of Glomus species in protecting white clover against nematode damage. Can J Bot 77:135-139CrossRefGoogle Scholar
  19. Harrison M, Dixon R (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643-659Google Scholar
  20. Hause B, Cornelia M, Stanislav I, Strack D (2007) Jasmonate in arbuscular mycorrhizal interactions. Phytochemistry 68:101-110.CrossRefPubMedGoogle Scholar
  21. Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512-518Google Scholar
  22. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459-480CrossRefGoogle Scholar
  23. Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727-734CrossRefGoogle Scholar
  24. Kinkema M, Scott PT, Gresshoff PM (2006) Legume nodulation: successful symbiosis through short-and long-distance signalling. Funct Plant Biol 33:707-721CrossRefGoogle Scholar
  25. Lackie SM, Garriock ML, Peterson RL, Bowley SR (1987) Influence of host plant on the morphology of the vesicular-arbuscular mycorrhizal fungus Glomus versiforme (Daniels and Trappe) Berch. Symbiosis 3:147-158Google Scholar
  26. Larose G, Chenevert, Moutoglis P, Gagne S, Piché, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329-1339CrossRefGoogle Scholar
  27. Lerat S, Lapointe L, Gutjahr S, Piché Y, Vierheilig H (2003a) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589-595CrossRefGoogle Scholar
  28. Lerat S, Lapointe L, Piché Y,Vierheilig H (2003b) Variable carbon sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886-889CrossRefGoogle Scholar
  29. Lioussanne L, Jolicoeur M, St. Arnaud M (2003) Effects of the alteration of tomato root exudation by Glomus intraradices colonization on Phytophthora parasitica var. Nicotianae zoospores. Abstract No. 253, Abstract Book ICOM 4; Montreal/ CanadaGoogle Scholar
  30. Mark GL, Cassells AC (1996) Genotype-dependence in the interaction between Glomus fistulosum, Phytophthora fragariae and the wild strawberry (Fragaria vesca). Plant Soil 185:233-239CrossRefGoogle Scholar
  31. Medina HMJ, Gagnon H, Piché Y, Ocampo JA, García Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993-998CrossRefGoogle Scholar
  32. Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709-715CrossRefPubMedGoogle Scholar
  33. Meixner C, Vegvari G, Ludwig-Müller J, Gagnon H, Steinkellner S, Staehelin C, Gresshoff P, Vierheilig H (2007) Two defined alleles of the lrr receptor kinase GmNARK in supernodulating soybean govern differing autoregulation of mycorrhization. Physiol Plant 130:261-270CrossRefGoogle Scholar
  34. Morandi D (1996) Occurence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241-251CrossRefGoogle Scholar
  35. Nagahashi G, Douds DD (2005) Environmental factors that affect presymbiotic hyphal growth and branching of arbuscular mycorrhizal fungi. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 95-110CrossRefGoogle Scholar
  36. Norman J R, Hooker J E (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069-1073CrossRefGoogle Scholar
  37. Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496-502CrossRefPubMedGoogle Scholar
  38. Pearson JN, Abbott LK, Jasper DA (1993) Mediation of competition between two colonizing VA mycorrhizal fungi by the host plant. New Phytol 123:93-98CrossRefGoogle Scholar
  39. Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891-897CrossRefGoogle Scholar
  40. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resitance. Curr Opinion Plant Biol 4:393-398CrossRefGoogle Scholar
  41. Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) ß-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149-157CrossRefGoogle Scholar
  42. Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525-534CrossRefPubMedGoogle Scholar
  43. Ryan A, Jones P (2004) The effect of mycorrhization of potato roots on the hatching chemicals active towards the potato cyst nematodes, Globodera pallida and G. rostochiensis. Nematol 6:335-342CrossRefGoogle Scholar
  44. Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus mosseae. Planta 208:319-325CrossRefGoogle Scholar
  45. Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365-370CrossRefPubMedGoogle Scholar
  46. Scheffknecht S, St-Arnaud M, Khaosaad T, Steinkellner S, Vierheilig H (2007) An altered root exudation pattern through mycorrhization affecting microconidia germination of the highly specialized tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) is not tomato specific but also occurs in Fol non-host plants. Can J Bot 85:347-351CrossRefGoogle Scholar
  47. Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza in control of soil-borne pathogens. In: Mukerji KG, Chamola BP, Singh J (eds.) Mycorrhizal biology. Kluwer, New York pp 173-196Google Scholar
  48. Smith S E, Read DJ (1997) Mycorrhizal symbiosis. Academic, London Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219-227Google Scholar
  49. St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 217-231CrossRefGoogle Scholar
  50. St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant dis-eases and pests. In: Hamel C, Plenchette C (eds). Mycorrhizae in crop production: applying knowledge. Haworth, Binghampton, N.Y. (in press)Google Scholar
  51. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431-438Google Scholar
  52. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soil-borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185-209Google Scholar
  53. Vierheilig H (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot. 82:1166-1176CrossRefGoogle Scholar
  54. Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339-341CrossRefPubMedGoogle Scholar
  55. Vierheilig H, Bago B (2005) Host and non-host impact on the physiology of the AM symbiosis. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 139-158CrossRefGoogle Scholar
  56. Vierheilig H, Ocampo JA (1990) Effect of isothiocyanates on germination of spores of G. mosseae. Soil Biol Biochem 22:1161-1162CrossRefGoogle Scholar
  57. Vierheilig H, Ocampo JA (1991) Receptivity of various wheat cultivars to infection by VA-mycorrhizal fungi as influenced by inoculum potential and the relation of VAM effectiveness to succinic dehydrogenase activity of the mycelium in the roots. Plant Soil 133:291-296CrossRefGoogle Scholar
  58. Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell function. Kluwer, New York, pp 23-39Google Scholar
  59. Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A (1994) Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143:337-343Google Scholar
  60. Vierheilig H, Garcia-Garrido MJ, Wyss U, Piché Y (2000a) Systemic suppression of mycorrhizal colonization in barley roots already colonized by AM-fungi. Soil Biol Biochem 32:589-595CrossRefGoogle Scholar
  61. Vierheilig H, Gagnon H, Strack D, Maier W (2000b) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9:291-293CrossRefGoogle Scholar
  62. Vierheilig H, Lerat S, Piché Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167-170CrossRefPubMedGoogle Scholar
  63. Villegas J, Williams RD, Nantais L, Archambault J, Fortin JA (1996) Effects of N source on pH and nutrient exchange of extramatrical mycelium in a mycorrhizal Ri T-DNA transformed root system. Mycorrhiza 6:247-251CrossRefGoogle Scholar
  64. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198-1227CrossRefGoogle Scholar
  65. Wyss P, Boller, T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in bean roots. Experientia 47:395-399CrossRefGoogle Scholar
  66. Xavier LJC, Boyetchko SM (2004) Arbuscular mycorrhizal fungi in plant disease control. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Dekker, New York, pp 183-194Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. Vierheilig
    • 1
  • S. Steinkellner
    • 2
  • T. Khaosaad
    • 2
  • J. M. Garcia-Garrido
    • 1
  1. 1.Departamento de Microbiología de SuelosEstación Experimental de Zaidín, CSICGranadaSpain
  2. 2.Institut für Pflanzenschutz (DAPP)Universität für Bodenkultur WienWienAustria

Personalised recommendations