Advertisement

Mycorrhiza pp 281-306 | Cite as

Mycorrhizal Fungi and Other Root Endophytes as Biocontrol Agents Against Root Pathogens

  • S. Tripathi
  • S. Kamal
  • I. Sheramati
  • R. Oelmuller
  • A. VarmaEmail author

In nature, production of disease-free plants with enhanced yield and compounds of therapeutic value can be mediated through rhizospheric microorganisms. There are increasing environmental concerns over the widespread use of biocontrol measures in general, and alternatively, more sustainable methods of disease control are now being sought. Plant diseases caused by root pathogens need to be controlled in order to maintain the quality and abundance of food, feed and fiber, the prime necessities of life. Different approaches are used for prevention and control of these root pathogens. Among these alternatives are those referred to as biological control; the most obvious and apparently biological control is a potent means of reducing the damage caused by plant pathogens. The potential agents for biocontrol activity are rhizosphere-competent fungi and bacteria which, in addition to their antagonistic activity, are capable of inducing growth responses by either controlling minor pathogens or by producing growth-stimulating factors.

A variety of biological controls are available for use, but further development and effective adoption requires a greater understanding of the complex interactions among plants, people, and the environment. This article emphasizes: (1) information about mycorrhiza and root endophytes, (2) various definitions and key mechanisms of biocontrol, and (3) the relationships between microbial diversity and biological control.

Keywords

Biological Control Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Biocontrol Agent Endophytic Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1997) Biological control of Fusarium-wilts: towards development of commercial product. In: Boland G J, Kuykendall L D (eds) Plant microbe interactions and biological control. Dekker, New York, pp 15-36Google Scholar
  2. Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347-357PubMedGoogle Scholar
  3. Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (eds) Mycorrhizal functioning. An integrative plant-fungal process. Routledge, Chapman & Hall, New York, pp 163-198Google Scholar
  4. Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457-464Google Scholar
  5. Bacon CW (1993) Abiotic stress tolerances (moisture and nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123-141Google Scholar
  6. Baldock JA, Masiello CA, Gélinas Y, Hedges J I (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39-64Google Scholar
  7. Barea J M (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, KobayashiL, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150-158Google Scholar
  8. Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246-256Google Scholar
  9. Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262-266Google Scholar
  10. Bedini S, Avio L, Argese E, Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric Ecosys Environ 120:463-466Google Scholar
  11. Benhamou N, Chet I (1997) Cellular and molecular mechanisms involved in the intersection between Trichoderma harzianum and Pythium ultimum. Appl Environ Microbiol 63:2095-2099PubMedGoogle Scholar
  12. Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fert Soils 33:152-156Google Scholar
  13. Bestel-Corre G, Dumas-Gaudot E, and Gianinazzi S (2004) Proteomics as a tool to monitor plant-microbe endosymbioses in the rhizosphere. Mycorrhiza 14:1-10PubMedGoogle Scholar
  14. Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97-105Google Scholar
  15. Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyroides. Sydowia 44:1-12Google Scholar
  16. Biological Control of Plant Diseases (2007) Eds. S. Chincholkar and K.G Mukerji. The Haworth PressGoogle Scholar
  17. Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41:41-73Google Scholar
  18. Broek AV, Vanderleyden J (1995) Genetics of the Azospirillum-plant root association. Crit Rev Plant Sci 14:445-466Google Scholar
  19. Brunner F, Petrini O (1992) Taxonomic studies of Xylaria species and xylariaceous endophytes by isozyme electrophoresis. Mycol Res 96:723-733Google Scholar
  20. Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148-5150PubMedGoogle Scholar
  21. Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 421-452Google Scholar
  22. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2-9Google Scholar
  23. Catska V (1994) Interrelationship between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biol Plant 36:99-104Google Scholar
  24. Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001). Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391extends the range of biocontrol ability of phenazine1carboxylic acid producing Pseudomonas. Mol Plant Microb Interact 14:1006-1015Google Scholar
  25. Clay K (1987) Effect of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinaceae. Oecologia 73:358-362Google Scholar
  26. Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275-297Google Scholar
  27. Clay K (1991) Fungal endophytes, grasses and herbivores. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant herbivore interactions. Wiley, New York, pp 199-226Google Scholar
  28. Compant S, Duffy B, Nowak J, Clément C, Barka E A (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951-4959PubMedGoogle Scholar
  29. Dahlman DL, Eichenseer H, Siegel MR (1991) Chemical perspective on endophyte grass interactions and their implications to insect herbivory. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant herbivore interactions. Wiley, New York, pp 227-252Google Scholar
  30. Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203-209PubMedGoogle Scholar
  31. De Bary A (1866) Morphologie und Physiologi der Pilze, Flechten, und Myxomyceten. [Hofmeister’s Handbook of Physiological Botany. Vol. 2.] LeipzigGoogle Scholar
  32. Defago G, Keel C (1995) Pseudomonads as biocontrol agents of diseases caused by soilborne pathogens In: Hokkanen HMT, Lynch JM (eds) Benefits and risks of introducing biocontrol agents. Cambridge University Press, CambridgeGoogle Scholar
  33. Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199-204PubMedGoogle Scholar
  34. Dobbelaere S, Croonenborghs A, Thys A, Vande Browk A, Vanderleyden J (1999) Phytostimulatory effect Azospirillum brasilense strains and auxins on wheat. Plant Soil 212:155-164Google Scholar
  35. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:1-9Google Scholar
  36. Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, Minn., pp 27-45Google Scholar
  37. Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903-910Google Scholar
  38. Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of host defence systems In: Kapulnick Y, Douds Jr DD (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 121-140Google Scholar
  39. El Zemrany H, Cortet J, Lutz MP, Chabert A, Baudoin E, Haurat J, Maughan N, Félix D, Défago G, Bally R, Moënne-Loccoz Y (2006) Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilization. Soil Biol Biochem 38:1712-1726Google Scholar
  40. Farmer E E (2007) Plant biology: jasmonate perception machines. Nature 448:659-660PubMedGoogle Scholar
  41. Fisher PJ, Anson AE, Pertini O (1984a) Antibiotic activity of some endophytic fungi from ericaceous plants. Bot Helvet 94:249-253Google Scholar
  42. Fisher PJ, Anson AE, Pertini O (1984b) Novel antibiotic activity of an endophyte Cryptosporiopsis sp. isolated from Vaccinium myrtillus. Trans Br Mycol Soc 83:145-148Google Scholar
  43. Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123-132Google Scholar
  44. Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517-523Google Scholar
  45. Gange AC, Whitfield L, Ixer-Pitfield S (2004) Assessment of arbuscular mycorrhizal fungi as potential biocontrol agents for Poa annua L. in fine turf. J Turfgrass Sports Surface Sci 80Google Scholar
  46. Garbeva P, van Veen JA, van Elsas J D (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243-270PubMedGoogle Scholar
  47. Garcia-Garrido JM, Ocampo JA (1989) Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol Biochem 21:165-167Google Scholar
  48. Garcia-Garrido JM, Tribak M, Rejon-Palomares A, Ocampo JA, Garcia-Romera I (2000) Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J Exper Bot 51:1443-1448Google Scholar
  49. Garmendia I, Goicoechea N, Aguirreolea J (2005) Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza 15:345-356PubMedGoogle Scholar
  50. Gasoni L, Stegman De Gurfinkel B (1997) The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycol Res 101:867-870Google Scholar
  51. Ghimire SR, Hyde KD (2004) Fungal Endophytes. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant Surface Microbiology. Springer-Verlag Berlin Heidelberg, pp 281-292Google Scholar
  52. Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45-57Google Scholar
  53. Giovannetti M (2000) Spore germination and pre-symbiotic mycelial growth In: Kapulnick Y, Douds DDJr. (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 47-68Google Scholar
  54. Giri B, Giang P H, Kumari R, Prasad R, Sachdev M, Garg A P, Oelmuller R and Varma A (2004) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Micro-organisms in soils: roles in genesis and functions. Soil biology series. Springer, Heidelberg, pp 213-252Google Scholar
  55. Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leefang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371-3378PubMedGoogle Scholar
  56. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can. J. Microbiol 41:109-117Google Scholar
  57. Guenoune D, Galili S, Phillips DA, Volpin H, ChetOkon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci. 160:925-932PubMedGoogle Scholar
  58. Haas D, Keel C, Laville J, Maurhofer M, Oberliansli T, Schnider U, Voisard C, Wüthrich B, Defago G (1991) Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppresion of root diseases. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 450-456Google Scholar
  59. Hameeda B, Harini G, Rupela OP, Reddy G. (2007) Effect of composts or vermicomposts on sorghum growth and mycorrhizal colonization. Afr J Biotechnol 6:009-012Google Scholar
  60. Harman GE, Howell CR, Vitarbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43-56PubMedGoogle Scholar
  61. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149-157Google Scholar
  62. He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37:589-602PubMedGoogle Scholar
  63. Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate dependent phenomenon. Annu Rev Phytopathol 37:427-446PubMedGoogle Scholar
  64. Iavicoli A, Boutet E, Buchala A, Métraux J P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microb Interact 16:851-858Google Scholar
  65. James HG (2001) What Do Root Pathogens See in Mycorrhizas? New Phytol 149:357-359Google Scholar
  66. Jordaan A, Taylor J E, Rossenkhan R (2006) Occurrence and possible role of endophytic fungi associated with seed pods of Colophospermum mopane (Fabaceae)in Botswana. (Published online) http://www.sciencedirect.com/science/journal/02546299
  67. Kimmons CA (1990) Nematode reproduction on endophyte infected and endophyte free tall fescue. Plant Dis 74:757-761Google Scholar
  68. Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manage Sci 59:475-483Google Scholar
  69. Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems) In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111-118Google Scholar
  70. Kulik MM (1988). Observations by scanning electron and brightfield microscopy on the mode of penetration of soybean seedlings by Phomopsis phaseoli. Plant Dis 72:115-118Google Scholar
  71. Kuster H, Becker A, Firnhaber C, Hohnjec N, Manthey K, Perlick A M, Bekel T, Dondrup M, Henckel K, Goesmann A, Meyer F, Wipf D, Requena N, Hildebrandt U, Hampp R, Nehls U, Krajinski F, Franken P, Puhler A (2007) Development of bioinformatic tools to support EST-sequencing, in silico-and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry 38:19-32Google Scholar
  72. Lacey LA, Frutos R, Kaya HK,Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230-248Google Scholar
  73. Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid, a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298-300PubMedGoogle Scholar
  74. Lemanceau P, Alabouvette C (1993). Suppression of Fusarium-wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci Technol 3:219-234Google Scholar
  75. Lewis DH (1973) Concept in fungal nutrition and the origin of biotrophy. Biol Rev 48:261-278Google Scholar
  76. Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154-63PubMedGoogle Scholar
  77. Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1-26Google Scholar
  78. Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases.In: Kapulnik Y, Douds DD Jr. (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 345-365Google Scholar
  79. Marschner P, Rengel Z (2007) Nutrient Cycling in Terrestrial Ecosystems. Springer Verlag GermanyGoogle Scholar
  80. McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452-460PubMedGoogle Scholar
  81. Miller JD (1986). Toxic metabolites of epiphytic and endophytic fungi of conifers needles. In: Fokkema NJ, Heuvel JVD (eds) Microbiology of phyllosphere. Cambridge University Press, Cambridge, pp 223-231Google Scholar
  82. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr. (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 3-18Google Scholar
  83. Morris PF, Ward EWR (1992) Chemoattraction of zoospores of the plant soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol 40:17-22Google Scholar
  84. Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (zygomycetes): a new order glomales, two new suborders, glomineae and gigasporineae and gigasporaceae, with an amendation of glomaceae. Mycotaxon 37:471-491Google Scholar
  85. Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181-195Google Scholar
  86. Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease management. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management, Springer, Heidelberg, pp 245-266Google Scholar
  87. Mukerji KG, Mandeep and Varma A (1998) Mycorrhizosphere microrganisms: screening and evaluation. In: Varma A (ed) Mycorrhiza manual. Springer, Heideberg, pp 85-98Google Scholar
  88. Numberger T, Brunner F, Kemmerling B and Piater L (2004) Innate immunity in plants and animals:striking similarities and obvious differences. Immunol Rev 198:249-266Google Scholar
  89. O’Donnell J, Dickinson CH (1980) Pathogenicity of Alternaria and Cladosporium isolated on Phaseolus. Trans Br Mycol Soc 74:335-342Google Scholar
  90. Ocón A, Hampp R and Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879-891PubMedGoogle Scholar
  91. Odum EP (1953) Fundamentals of ecology. Saunders, PhiladelphiaGoogle Scholar
  92. Ongena M, Duby F, Rossignol F, Fouconnier ML, Dommes J and Thonart P (2004) Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol. Plant Microb Interact 17:1009-1018Google Scholar
  93. Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in the biocontrol of Sclerotium rolfsii. Phytopathology 78:84-88Google Scholar
  94. Pal KK, B McSpadden Gardener (2006) Biological control of plant pathogens. The plant health instructor DOI: 10.1094/PHI-A-2006-1117-02Google Scholar
  95. Palumbo JD, Yuen GY, Jochum CC, Tatum K, and Kobayashi DY (2005) Mutagenesis of beta-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701-707PubMedGoogle Scholar
  96. Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733-737PubMedGoogle Scholar
  97. Petrini O (1991) Fungal. endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbila ecology of leaves. Springer, Heidelberg, pp 179-197Google Scholar
  98. Petrini O (1996) Ecological and physiological aspect of host specificity in endophytic fungi. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St Paul, MinnGoogle Scholar
  99. Petrini O, Fisher PJ, Petrini LE (1992) Fungal endophytes of bracken (Pteridium aquilinum) with some reflections on their use in biological control. Sydowia 44:282-293Google Scholar
  100. Probanza A, Lucas García JA, Ruiz Palomino M, Ramos B, Gutiérrez Mañero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumillus CECT 5105). Appl Soil Ecol 20:75-84Google Scholar
  101. Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4 :210-222Google Scholar
  102. Ramarathnam R, Dilantha FWG (2006) Preliminary phenotypic and molecular screening for potential bacterial biocontrol agents of Leptosphaeria maculans, the blackleg pathogen of canola. Biocontrol Sci Technol 16:567-582Google Scholar
  103. Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276-284PubMedGoogle Scholar
  104. Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indige-nous plant-microbe symbioses aids restoration of desertified. Appl Environ Microbiol 67:495-498PubMedGoogle Scholar
  105. Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68:33-40PubMedGoogle Scholar
  106. Ross EW, Marx DM (1972) Susceptibility sand pine to Phytophthora cinnamomi. Phytopathology 62:1197-1200CrossRefGoogle Scholar
  107. Sanders IR, Clapp JP, Wiemken A (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems -a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol 133:123-134Google Scholar
  108. Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365-70PubMedGoogle Scholar
  109. Schulz B, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions.II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213-227Google Scholar
  110. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1421-1423Google Scholar
  111. Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field Conditions. Phytopathology 97:523-531PubMedGoogle Scholar
  112. Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton-X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945-958PubMedGoogle Scholar
  113. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeo-domain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241-26247PubMedGoogle Scholar
  114. Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76-84PubMedGoogle Scholar
  115. Siddiqui Z, Akhtar M (2006) Biological control of root-rot disease complex of chickpea by AM fungi. Arch Phytopathol Plant Prot 39:389-395Google Scholar
  116. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  117. Stone JK (1988) Fine structure of latent infection by Rhabdocline parkeri on Douglas fir, with observation on uninfected epidermal cells. Can J Bot 66:45-54Google Scholar
  118. Suske J, Acker G (1989) Identification of endophytic hyphae of Lophodermium piceae in tissues of green, symptomless Norway spruce needles by immunoelectorn microscopy. Can J Bot 67:1768-1774Google Scholar
  119. Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2006) Fungalendophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427-35PubMedGoogle Scholar
  120. Thygesen K, Larsen J, Bødker L (2004) Arbuscular Mycorrhizal Fungi Reduce Development of Pea Root-rot caused by Aphanomyces euteiches using Oospores as Pathogen Inoculum. Eur J Plant Pathol 110:411-419Google Scholar
  121. Van de Broek A, Lambrecht M, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decaboxylase gene from Azospirillum brasilense. J Bacteriol 181:1338-1342Google Scholar
  122. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453-483PubMedGoogle Scholar
  123. Varma A, Chincholkar S (eds) (2007) Microbial siderophores, Springer, HeidelbergGoogle Scholar
  124. Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol. 65:2741-2744PubMedGoogle Scholar
  125. Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer, New York, pp 23-29Google Scholar
  126. Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981-982Google Scholar
  127. Waller W, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci USA 102:13386-13391PubMedGoogle Scholar
  128. Weller DM, Raaijmakers J, McSpadden Gardener B, Thomashow LM (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309-348PubMedGoogle Scholar
  129. Wilson D (1995) Endophyte -the evolution of term, a classification of its use and definition. Oikos 73:274-276Google Scholar
  130. Ziedan EHE (2006) Manipulating endophytic bacteria for biological control to soil borne diseases of peanut. J Appl Sci Res 2:497-502Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. Tripathi
    • 1
  • S. Kamal
    • 1
  • I. Sheramati
    • 2
  • R. Oelmuller
    • 3
  • A. Varma
    • 1
    Email author
  1. 1.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoida 201 303, Uttar PradeshIndia
  2. 2.Institut für Allgemeine Botanik und PflanzenphysiologieFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institute of General Botany Department of Environmental SciencesUniversity of JenaJenaGermany

Personalised recommendations