Approximating PageRank from In-Degree

  • Santo Fortunato
  • Marián Boguñá
  • Alessandro Flammini
  • Filippo Menczer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4936)


PageRank is a key element in the success of search engines, allowing to rank the most important hits in the top screen of results. One key aspect that distinguishes PageRank from other prestige measures such as in-degree is its global nature. From the information provider perspective, this makes it difficult or impossible to predict how their pages will be ranked. Consequently a market has emerged for the optimization of search engine results. Here we study the accuracy with which PageRank can be approximated by in-degree, a local measure made freely available by search engines. Theoretical and empirical analyses lead to conclude that given the weak degree correlations in the Web link graph, the approximation can be relatively accurate, giving service and information providers an effective new marketing tool.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks 30(1–7), 107–117 (1998)Google Scholar
  2. 2.
    Sullivan, D.: Nielsen//netratings search engine ratings (August (2005),
  3. 3.
    Amento, B., Terveen, L., Hill, W.: Does “authority” mean quality? Predicting expert quality ratings of Web documents. In: Proc. 23rd ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 296–303 (2000)Google Scholar
  4. 4.
    Pandurangan, G., Raghavan, P., Upfal, E.: Using pagerank to characterize Web structure. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 330–339. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Donato, D., Laura, L., Leonardi, S., Millozzi, S.: Large scale properties of the webgraph. European Physical Journal B 38, 239–243 (2004)CrossRefGoogle Scholar
  6. 6.
    Garcia-Molina, H.: The Stanford WebBase Project (2005),
  7. 7.
    Nakamura, I.: Large scale properties of the webgraph. Physical Review 68 (2003) 045104Google Scholar
  8. 8.
    Volkovich, Y., Litvak, N., Donato, D.: Determining factors behind the PageRank log-log plot. Technical Report 1823, Department of Applied Mathematics, University of Twente (2007)Google Scholar
  9. 9.
    Binney, J., Dowrick, N., Fisher, A., Newman, M.: The theory of critical phenomena. First edn. Oxford University Press, Oxford (1992)Google Scholar
  10. 10.
    Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet. Cambridge University Press, Cambridge, UK (2004)Google Scholar
  11. 11.
    Laboratory for Web Algorithmics (LAW), University of Milan: WebGraph (2005),
  12. 12.
    Donato, D., Leonardi, S., Tsaparas, P.: Stability and similarity of link analysis ranking algorithms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 717–729. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Serrano, M., Maguitman, A., Boguñá, M., Fortunato, S., Vespignani, A.: Decoding the structure of the WWW: Facts versus bias. In: ACM Transactions on the Web (In press) Google Scholar
  14. 14.
    Websidestory: User navigation behavior to effect link popularity (May, Cited by Search Engine Round Table According to this source, Websidestory Vice President Jay McCarthy announced at the Search Engine Strategies Conference (Toronto 2005) that the number of page referrals from search engines has surpassed those from other pages (2005),
  15. 15.
    Sullivan, D.: Intro to search engine optimization,
  16. 16.
    Qiu, F., Liu, Z., Cho, J.: Analysis of user web traffic with a focus on search activities. In: Proc. International Workshop on the Web and Databases (WebDB). (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Santo Fortunato
    • 1
    • 2
  • Marián Boguñá
    • 3
  • Alessandro Flammini
    • 1
  • Filippo Menczer
    • 1
  1. 1.School of InformaticsIndiana UniversityBloomingtonUSA
  2. 2.Complex Networks Lagrange Laboratory (CNLL)ISI FoundationTorinoItaly
  3. 3.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations