IDE Dataflow Analysis in the Presence of Large Object-Oriented Libraries

  • Atanas Rountev
  • Mariana Sharp
  • Guoqing Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4959)


A key scalability challenge for interprocedural dataflow analysis comes from large libraries. Our work addresses this challenge for the general category of interprocedural distributive environment (IDE) dataflow problems. Using pre-computed library summary information, the proposed approach reduces significantly the cost of whole-program IDE analyses without any loss of precision. We define an approach for library summary generation by using a graph representation of dataflow summary functions, and by abstracting away redundant dataflow facts that are internal to the library. Our approach also handles object-oriented features, by employing an IDE type analysis as well as special handling of polymorphic library call sites whose target methods depend on the future (unknown) client code. Experimental results show that dramatic cost savings can be achieved with the help of these techniques.


Dependence Analysis Call Graph Summary Generation Target Method Call Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications to constant propagation. Theoretical Comp. Sci. 167, 131–170 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Program Flow Analysis: Theory and Applications, pp. 189–234 (1981)Google Scholar
  3. 3.
    Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reachability. In: POPL, pp. 49–61 (1995)Google Scholar
  4. 4.
    Reps, T., Sagiv, M., Horwitz, S.: Interprocedural dataflow analysis via graph reachability. Technical Report DIKU-TR94-14, U. Copenhagen (1994)Google Scholar
  5. 5.
    Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered sequence diagrams. In: ICSE, pp. 254–263 (2005)Google Scholar
  6. 6.
    Grove, D., Chambers, C.: A framework for call graph construction algorithms. TOPLAS 23(6), 685–746 (2001)CrossRefGoogle Scholar
  7. 7.
    Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algorithms. In: OOPSLA, pp. 281–293 (2000)Google Scholar
  8. 8.
    Heintze, N.: Set Based Program Analysis. PhD thesis, CMU (1992)Google Scholar
  9. 9.
    Callahan, D.: The program summary graph and flow-sensitive interprocedural data flow analysis. In: PLDI, pp. 47–56 (1988)Google Scholar
  10. 10.
    Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. TOPLAS 12(1), 26–60 (1990)CrossRefGoogle Scholar
  11. 11.
    Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the presence of large libraries. Technical Report CISRC-TR01, Ohio State U (2006)Google Scholar
  12. 12.
    Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.: Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Sharp, M.: Static Analyses for Java in the Presence of Distributed Components and Large Libraries. PhD thesis, Ohio State University (2007)Google Scholar
  14. 14.
    Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 159–178. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure summaries. In: POPL (2008)Google Scholar
  17. 17.
    Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the presence of large libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 2–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Chatterjee, R., Ryder, B.G., Landi, W.: Relevant context inference. In: POPL, pp. 133–146 (1999)Google Scholar
  19. 19.
    Choi, J., Gupta, M., Serrano, M., Sreedhar, V., Midkiff, S.: Escape analysis for Java. In: OOPSLA, pp. 1–19 (1999)Google Scholar
  20. 20.
    Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java programs. In: OOPSLA, pp. 187–206 (1999)Google Scholar
  21. 21.
    Cheng, B., Hwu, W.: Modular interprocedural pointer analysis using access paths. In: PLDI, pp. 57–69 (2000)Google Scholar
  22. 22.
    Ruf, E.: Effective synchronization removal for Java. In: PLDI, pp. 208–218 (2000)Google Scholar
  23. 23.
    Foster, J., Fähndrich, M., Aiken, A.: Polymorphic versus monomorphic flow-insensitive points-to analysis for C. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 175–198. Springer, Heidelberg (2000)Google Scholar
  24. 24.
    Liang, D., Harrold, M.J.: Efficient computation of parameterized pointer information for interprocedural analyses. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 279–298. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Triantafyllis, S., Bridges, M., Raman, E., Ottoni, G., August, D.: A framework for unrestricted whole-program optimization. In: PLDI, pp. 61–71 (2006)Google Scholar
  26. 26.
    Cherem, S., Rugina, R.: A practical effect and escape analysis for building lightweight method summaries. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420, pp. 172–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Chatterjee, R., Ryder, B.G.: Data-flow-based testing of object-oriented libraries. Technical Report DCS-TR-433, Rutgers University (2001)Google Scholar
  28. 28.
    Oxhøj, N., Palsberg, J., Schwartzbach, M.: Making Type Inference Practical. In: Lehrmann Madsen, O. (ed.) ECOOP 1992. LNCS, vol. 615, pp. 329–349. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  29. 29.
    Codish, M., Debray, S., Giacobazzi, R.: Compositional analysis of modular logic programs. In: POPL, pp. 451–464 (1993)Google Scholar
  30. 30.
    Flanagan, C., Felleisen, M.: Componential set-based analysis. TOPLAS 21(2), 370–416 (1999)CrossRefGoogle Scholar
  31. 31.
    Das, M.: Unification-based pointer analysis with directional assignments. In: PLDI, pp. 35–46 (2000)Google Scholar
  32. 32.
    Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA. In: PLDI, pp. 254–263 (2001)Google Scholar
  33. 33.
    Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built with precompiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 20–36. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  34. 34.
    Dwyer, M.: Modular flow analysis of concurrent software. In: ASE, pp. 264–273 (1997)Google Scholar
  35. 35.
    Guyer, S., Lin, C.: Optimizing the use of high performance software libraries. In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000. LNCS, vol. 2017, pp. 227–243. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Rugina, R., Rinard, M.: Design-driven compilation. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 150–164. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  37. 37.
    Harrold, M.J., Rothermel, G.: Separate computation of alias information for reuse. TSE 22(7), 442–460 (1996)Google Scholar
  38. 38.
    Rountev, A., Ryder, B.G., Landi, W.: Data-flow analysis of program fragments. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp. 235–252. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  39. 39.
    Sreedhar, V., Burke, M., Choi, J.: A framework for interprocedural optimization in the presence of dynamic class loading. In: PLDI, pp. 196–207 (2000)Google Scholar
  40. 40.
    Ghemawat, S., Randall, K., Scales, D.: Field analysis: Getting useful and low-cost interprocedural information. In: PLDI, pp. 334–344 (2000)Google Scholar
  41. 41.
    Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI, pp. 35–46 (2001)Google Scholar
  42. 42.
    Tip, F., Sweeney, P., Laffra, C., Eisma, A., Streeter, D.: Practical extraction techniques for Java. TOPLAS 24(6), 625–666 (2002)CrossRefGoogle Scholar
  43. 43.
    Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of polymorphism in Java software. TSE 30(6), 372–387 (2004)Google Scholar
  44. 44.
    Rountev, A.: Precise identification of side-effect-free methods in Java. In: ICSM, pp. 82–91 (2004)Google Scholar
  45. 45.
    Xue, J., Nguyen, P.H.: Completeness analysis for incomplete object-oriented programs. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 271–286. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Atanas Rountev
    • 1
  • Mariana Sharp
    • 1
  • Guoqing Xu
    • 1
  1. 1.Ohio State UniversityUSA

Personalised recommendations