Fixed-Parameter Algorithms for Cluster Vertex Deletion

  • Falk Hüffner
  • Christian Komusiewicz
  • Hannes Moser
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4957)

Abstract

We initiate the first systematic study of the NP-hard Cluster Vertex Deletion (CVD) problem (unweighted and weighted) in terms of fixed-parameter algorithmics. In the unweighted case, one searches for a minimum number of vertex deletions to transform a graph into a collection of disjoint cliques. The parameter is the number of vertex deletions. We present efficient fixed-parameter algorithms for CVD. Our iterative compression algorithm for CVD seems to be the first nontrivial application of this fairly new technique to a problem that is not a feedback set problem. Moreover, we study the variant of CVD where the number of cliques to be generated is specified. Here, we detect connections to fixed-parameter algorithms for (weighted) Vertex Cover.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ailon, N., Charikar, M., Newman, A.: Proofs of conjectures in Aggregating inconsistent information: Ranking and clustering. Technical Report TR-719-05, Department of Computer Science, Princeton University (2005)Google Scholar
  4. 4.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: PEACE: Parameterized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena (September 2007)Google Scholar
  5. 5.
    Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Fernau, H.: Parameterized algorithms for hitting set: The weighted case. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 332–343. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory of Computing 2, 249–266 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guo, J.: A more effective linear kernelization for cluster editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 51(1) (2008)Google Scholar
  14. 14.
    Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO Recherche Opérationnelle 31(1), 45–66 (1997)MATHMathSciNetGoogle Scholar
  15. 15.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  17. 17.
    Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. Journal of Algorithms 47(2), 320–331 (2003)MathSciNetGoogle Scholar
  18. 18.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truß, A., Böcker, S.: Exact and heuristic algorithms for weighted cluster editing. In: Proc. 6th CSB. Computational Systems Bioinformatics, vol. 6, pp. 391–401. Imperial College Press (2007)Google Scholar
  20. 20.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and Related Problems. PhD thesis, Department of Computer and Information Science, Linköpings universitet (2007)Google Scholar
  23. 23.
    van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. 5th WAOA, LNCS. Springer, Heidelberg (to appear, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Falk Hüffner
    • 1
  • Christian Komusiewicz
    • 1
  • Hannes Moser
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations