Advertisement

Fixed-Parameter Algorithms for Cluster Vertex Deletion

  • Falk Hüffner
  • Christian Komusiewicz
  • Hannes Moser
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4957)

Abstract

We initiate the first systematic study of the NP-hard Cluster Vertex Deletion (CVD) problem (unweighted and weighted) in terms of fixed-parameter algorithmics. In the unweighted case, one searches for a minimum number of vertex deletions to transform a graph into a collection of disjoint cliques. The parameter is the number of vertex deletions. We present efficient fixed-parameter algorithms for CVD. Our iterative compression algorithm for CVD seems to be the first nontrivial application of this fairly new technique to a problem that is not a feedback set problem. Moreover, we study the variant of CVD where the number of cliques to be generated is specified. Here, we detect connections to fixed-parameter algorithms for (weighted) Vertex Cover.

Keywords

Vertex Cover Reduction Rule Cluster Graph Vertex Deletion Search Tree Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Ailon, N., Charikar, M., Newman, A.: Proofs of conjectures in Aggregating inconsistent information: Ranking and clustering. Technical Report TR-719-05, Department of Computer Science, Princeton University (2005)Google Scholar
  4. 4.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: PEACE: Parameterized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena (September 2007)Google Scholar
  5. 5.
    Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Fernau, H.: Parameterized algorithms for hitting set: The weighted case. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 332–343. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory of Computing 2, 249–266 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guo, J.: A more effective linear kernelization for cluster editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 51(1) (2008)Google Scholar
  14. 14.
    Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO Recherche Opérationnelle 31(1), 45–66 (1997)MATHMathSciNetGoogle Scholar
  15. 15.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  17. 17.
    Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. Journal of Algorithms 47(2), 320–331 (2003)MathSciNetGoogle Scholar
  18. 18.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truß, A., Böcker, S.: Exact and heuristic algorithms for weighted cluster editing. In: Proc. 6th CSB. Computational Systems Bioinformatics, vol. 6, pp. 391–401. Imperial College Press (2007)Google Scholar
  20. 20.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and Related Problems. PhD thesis, Department of Computer and Information Science, Linköpings universitet (2007)Google Scholar
  23. 23.
    van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. 5th WAOA, LNCS. Springer, Heidelberg (to appear, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Falk Hüffner
    • 1
  • Christian Komusiewicz
    • 1
  • Hannes Moser
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations