Approximating Minimum-Power Degree and Connectivity Problems

  • Guy Kortsarz
  • Vahab S. Mirrokni
  • Zeev Nutov
  • Elena Tsanko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4957)


Power optimization is a central issue in wireless network design. Given a (possibly directed) graph with costs on the edges, the power of a node is the maximum cost of an edge leaving it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph Open image in new window with edge costs Open image in new window and degree requirements {r(v):v ∈ V}, the Minimum-Power Edge-Multi-Cover ( Open image in new window ) problem is to find a minimum-power subgraph of Open image in new window so that the degree of every node v is at least r(v). We give an O(logn)-approximation algorithms for Open image in new window , improving the previous ratio O(log4 n) of [11]. This is used to derive an O(logn + α)-approximation algorithm for the undirected Minimum-Power k -Connected Subgraph ( Open image in new window ) problem, where Open image in new window is the best known ratio for the min-cost variant of the problem (currently, Open image in new window for n ≥ 2k 2 and Open image in new window otherwise). Surprisingly, it shows that the min-power and the min-cost versions of the k -Connected Subgraph problem are equivalent with respect to approximation, unless the min-cost variant admits an o(logn)-approximation, which seems to be out of reach at the moment. We also improve the best known approximation ratios for small requirements. Specifically, we give a 3/2-approximation algorithm for Open image in new window with r(v) ∈ {0,1}, improving over the 2-approximation by [11], and a \(3\frac{2}{3}\)-approximation for the minimum-power 2-Connected and 2-Edge-Connected Subgraph problems, improving the 4-approximation by [4]. Finally, we give a 4 r max -approximation algorithm for the undirected Minimum-Power Steiner Network ( Open image in new window ) problem: find a minimum-power subgraph that contains r(u,v) pairwise edge-disjoint paths for every pair u,v of nodes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althaus, E., Calinescu, G., Mandoiu, I., Prasad, S., Tchervenski, N., Zelikovsky, A.: Power efficient range assignment for symmetric connectivity in static ad-hoc wireless networks. Wireless Networks 12(3), 287–299 (2006)CrossRefGoogle Scholar
  2. 2.
    Auletta, V., Dinitz, Y., Nutov, Z., Parente, D.: A 2-approximation algorithm for finding 3-vertex-connected spanning subgraph. J. of Algorithms 32, 21–30 (1999)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Calinescu, G., Wan, P.J.: Range assignment for biconnectivity and k-edge connectivity in wireless ad hoc networks. Mobile Networks and Applications 11(2), 121–128 (2006)CrossRefGoogle Scholar
  5. 5.
    Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM J. on Computing 32(4), 1050–1055 (2003)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Scrijver, A.: Combinatorial Optimization. Wiley, Chichester (1998)MATHGoogle Scholar
  8. 8.
    Dinitz, Y., Nutov, Z.: A 3-approximation algorithm for finding 4,5-vertex-connected spanning subgraph. J. of Algorithms 32, 31–40 (1999)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica, 410–421 (2001)Google Scholar
  10. 10.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions–II. Math. Prog. Study 8, 73–87 (1978)MathSciNetGoogle Scholar
  11. 11.
    Hajiaghayi, M.T., Kortsarz, G., Mirrokni, V.S., Nutov, Z.: Power optimization for connectivity problems. Math. Program. 110(1), 195–208 (2007)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Khuller, S.: Approximation algorithms for for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, ch. 6, pp. 236–265. PWS (1995)Google Scholar
  14. 14.
    Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Information Processing Letters 70(1), 39–45 (1999)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Kortsarz, G., Nutov, Z.: Approximating node-connectivity problems via set covers. Algorithmica 37, 75–92 (2003)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical graphs. SIAM J. on Computing 35(1), 247–257 (2005)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Kortsarz, G., Nutov, Z.: Approximating min-cost connectivity problems. In: Gonzales, T. (ed.) Approximation algorithms and Metaheuristics, ch. 58 (2007)Google Scholar
  18. 18.
    Lando, Y., Nutov, Z.: On minimum power connectivity problems. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 87–98. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Nutov, Z.: Approximating minimum power covers of intersecting families and directed connectivity problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 236–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Prömel, H.J., Steger, A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. of Algorithms 36(1), 89–101 (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation algorithm for generalized steiner network problems. Combinatorica 15, 435–454 (1995)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guy Kortsarz
    • 1
  • Vahab S. Mirrokni
    • 2
  • Zeev Nutov
    • 3
  • Elena Tsanko
    • 4
  1. 1.Rutgers University, Camden 
  2. 2.Microsoft Research 
  3. 3.The Open University of Israel, Raanana 
  4. 4.IBM, Haifa 

Personalised recommendations