Advertisement

Approximate Polynomial gcd: Small Degree and Small Height Perturbations

  • Joachim von zur Gathen
  • Igor E. Shparlinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4957)

Abstract

We consider the following computational problem: we are given two coprime univariate polynomials f 0 and f 1 over a ring \(\mathcal{R}\) and want to find whether after a small perturbation we can achieve a large gcd. We solve this problem in polynomial time for two notions of “large” (and “small”): large degree (when \(\mathcal{R} = \mathbb{F}\) is an arbitrary field, in the generic case when f 0 and f 1 have a so-called normal degree sequence), and large height (when \(\mathcal{R} =\mathbb{Z}\)).

Keywords

Euclidean algorithm gcd approximate computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bini, D.A., Boito, P.: Structured Matrix-Based Methods for Polynomial ε-gcd: Analysis and Comparisons. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation ISSAC 2007, Waterloo, Ontario, Canada, pp. 9–16 (2007)Google Scholar
  2. 2.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003), http://www-math.upb.de/~aggathen/mca/ Google Scholar
  3. 3.
    Howgrave-Graham, N.: Approximate integer common divisor. In: Silverman, J.H. (ed.) Cryptography and Lattices: International Conference, CaLC 2001, Providence. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001), http://www.springerlink.com/content/ak783wexe7ghp5db/ Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Igor E. Shparlinski
    • 2
  1. 1.B-ITUniversität BonnBonnGermany
  2. 2.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations