Genetic Programming in Statistical Arbitrage

  • Philip Saks
  • Dietmar Maringer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4974)


This paper employs genetic programming to discover statistical arbitrage strategies on the banking sector in the Euro Stoxx universe. Binary decision rules are evolved using two different representations. The first is the classical single tree approach, while the second is a dual tree structure where evaluation is contingent on the current market position. Hence, buy and sell rules are co-evolved. Both methods are capable of discovering significant statistical arbitrage strategies.


Genetic Programming Sharpe Ratio Statistical Arbitrage Trading Rule Dual Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules. Journal of Financial Economics 51, 245–271 (1999)CrossRefGoogle Scholar
  2. 2.
    Arthur, B., Holland, J.H., LeBaron, B., Palmer, R., Tayler, P.: Asset pricing under endogenous expectations in an artificial stock market, Technical report, Santa Fe Institute (1996)Google Scholar
  3. 3.
    Barberis, N., Thaler, R.: Handbook of the Economics of Finance, pp. 1052–1090. Elsevier Science, Amsterdam (2003)Google Scholar
  4. 4.
    Becker, L.A., Seshadri, M.: Cooperative coevolution of technical trading rules, Technical report, Department of Computer Science, Worcester Polytechnic Institute (2003a)Google Scholar
  5. 5.
    Becker, L.A., Seshadri, M.: GP–evolved technical trading rules can outperform buy and hold, Technical report, Department of Computer Science, Worcester Polytechnic Institute (2003b)Google Scholar
  6. 6.
    Bhattacharyya, S., Pictet, O.V., Zumbach, G.: Knowledge–intensive genetic discovery in foreign exchange markets. IEEE Transactions on Evolutionary Computation 6(2), 169–181 (2002)CrossRefGoogle Scholar
  7. 7.
    Bondt, W.F.M.D., Thaler, R.: Does the stock market overreact. The Journal of Finance 40(3), 793–805 (1985)CrossRefGoogle Scholar
  8. 8.
    Dempster, M.A.H., Jones, C.M.: A real-time adaptive trading system using genetic programming. Quantitative Finance 1, 397–413 (2001)CrossRefGoogle Scholar
  9. 9.
    Fama, E.F.: Market efficiency, long-term returns, and behavioral finance. Journal of Financial Economics 49, 283–306 (1998)CrossRefGoogle Scholar
  10. 10.
    Hogan, S., Jarrow, R., Teo, M., Warachaka, M.: Testing market efficiency using statistical arbitrage with applications to momentum and value strategies. Journal of Financial Economics 73, 525–565 (2004)CrossRefGoogle Scholar
  11. 11.
    Jain, P.C., Joh, G.-H.: The dependence between hourly prices and trading volume. Journal of Financial Economics 23(3), 269–283 (1988)Google Scholar
  12. 12.
    Jegadeesh, N., Titman, S.: Returns to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance 48(1), 65–91 (1993)CrossRefGoogle Scholar
  13. 13.
    Jensen, M.C.: Some anomalous evidence regarding market efficiency. Journal of Financial Economics 6, 95–101 (1978)CrossRefGoogle Scholar
  14. 14.
    Jonsson, H., Madjidi, P., Nordahl, M.G.: Evolution of trading rules for the FX market or how to make money out of GP, Technical report, Institute of Theoretical Physics, Chalmers University of Technology (1997)Google Scholar
  15. 15.
    Kahneman, D., Tversky, A.: Judgment under uncertainty: Heuristics and biases. Science 185(4157), 1124–1131 (1974)CrossRefGoogle Scholar
  16. 16.
    Li, J.: FGP: a genetic programming based tool for financial forecasting, PhD thesis, University of Essex (2001)Google Scholar
  17. 17.
    Politis, D.N., Romano, J.P.: The stationary bootstrap. Jounal of the American Statistical Association 89(428), 1303–1313 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philip Saks
    • 1
  • Dietmar Maringer
    • 1
  1. 1.Centre for Computational Finance and Economic AgentsUniversity of Essex 

Personalised recommendations