Advertisement

Scalable Continuous Multiobjective Optimization with a Neural Network–Based Estimation of Distribution Algorithm

  • Luis Martí
  • Jesús García
  • Antonio Berlanga
  • José M. Molina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4974)

Abstract

To achieve a substantial improvement of MOEDAs regarding MOEAs it is necessary to adapt their model building algorithm to suit this particular task. Most current model building schemes used so far off–the–shelf machine learning methods. However, the model building problem has specific requirements that those methods do not meet and even avoid.

In this we work propose a novel approach to model building in MOEDAs using an algorithm custom–made for the task. We base our proposal on the growing neural gas (GNG) network. The resulting model–building GNG (MB–GNG) is capable of yielding good results when confronted to high–dimensional problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  2. 2.
    Deb, K., Saxena, D.K.: On finding Pareto–optimal solutions through dimensionality reduction for certain large–dimensional multi–objective optimization problems. Technical Report 2005011, KanGAL (December 2005)Google Scholar
  3. 3.
    Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961)zbMATHGoogle Scholar
  4. 4.
    Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. A new tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, Boston/Dordrecht/London (2002)Google Scholar
  5. 5.
    Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)Google Scholar
  6. 6.
    Pareto, V.: Cours D’Economie Politique. F. Rouge, Lausanne (1896)Google Scholar
  7. 7.
    Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12. Kluwer, Norwell (1999)zbMATHGoogle Scholar
  8. 8.
    Bäck, T.: Evolutionary algorithms in theory and practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)zbMATHGoogle Scholar
  9. 9.
    Corne, D.W., Knowles, J.D.: No Free Lunch and Free Leftovers Theorems for Multiobjective Optimisation Problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 327–341. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. IlliGAL Report No. 99018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (1999)Google Scholar
  11. 11.
    Bosman, P.A.: Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis, Universiteit Utrecht, Utrecht, The Netherlands (2003)Google Scholar
  12. 12.
    Coello Coello, C.A.: Evolutionary multiobjective optimization: A historical view of the field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  14. 14.
    Martinetz, T.M., Berkovich, S.G., Shulten, K.J.: Neural–gas network for vector quantization and its application to time–series prediction. IEEE Transactions on Neural Networks 4, 558–560 (1993)CrossRefGoogle Scholar
  15. 15.
    Martinetz, T.M.: Competitive Hebbian learning rule forms perfectly topology preserving maps. In: International Conference on Artificial Neural Networks (ICANN 1993), Amsterdam, pp. 427–434. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Timm, H., Borgelt, C., Doring, C., Kruse, R.: An extension to possibilistic fuzzy cluster analysis. Fuzzy Sets and Systems 147(1), 3–16 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with application in cluster analysis. Neural Networks 17(8–9), 1135–1148 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  19. 19.
    Bosman, P.A., Thierens, D.: The Naïve MIDEA: A baseline multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 428–442. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Ahn, C.W.: Advances in Evolutionary Algorithms. Theory, Design and Practice. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  21. 21.
    Zhang, Q., Zhou, A., Jin, Y.: A regularity model based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation (in press 2007)Google Scholar
  22. 22.
    Costa, M., Minisci, E., Pasero, E.: An hybrid neural/genetic approach to continuous multi–objective optimization problems. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) WIRN 2003. LNCS, vol. 2859, pp. 61–69. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2002)Google Scholar
  24. 24.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. In: Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Luis Martí
    • 1
  • Jesús García
    • 1
  • Antonio Berlanga
    • 1
  • José M. Molina
    • 1
  1. 1.Universidad Carlos III de Madrid, Group of Applied Artificial IntelligenceAv. de la Universidad Carlos IIIMadridSpain

Personalised recommendations