Scaffolding for Interactively Evolving Novel Drum Tracks for Existing Songs

  • Amy K. Hoover
  • Michael P. Rosario
  • Kenneth O. Stanley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4974)

Abstract

A major challenge in computer-generated music is to produce music that sounds natural. This paper introduces NEAT Drummer, which takes steps toward natural creativity. NEAT Drummer evolves a kind of artificial neural network called a Compositional Pattern Producing Network (CPPN) with the NeuroEvolution of Augmenting Topologies (NEAT) method to produce drum patterns. An important motivation for this work is that instrument tracks can be generated as a function of other song parts, which, if written by humans, thereby provide a scaffold for the remaining auto-generated parts. Thus, NEAT Drummer is initialized with inputs from an existing MIDI song and through interactive evolution allows the user to evolve increasingly appealing rhythms for that song. This paper explains how NEAT Drummer processes MIDI inputs and outputs drum patterns. The net effect is that a compelling drum track can be automatically generated and evolved for any song.

Keywords

compositional pattern producing networks CPPNs computer-generated music interactive evolutionary computation IEC NeuroEvolution of Augmenting Topologies NEAT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    London, J.: Rhythm (November 2007), http://www.grovemusic.com
  3. 3.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capacities of EC optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  4. 4.
    Dawkins, R.: The Blind Watchmaker. Longman, Essex, U.K (1986)Google Scholar
  5. 5.
    Lindenmayer, A.: Mathematical models for cellular interaction in developement parts I and II. Journal of Theoretical Biology 18, 280–299 & 300–315 (1968)CrossRefGoogle Scholar
  6. 6.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)MATHGoogle Scholar
  7. 7.
    Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH) 1991, pp. 319–328. ACM Press, New York (1991)CrossRefGoogle Scholar
  8. 8.
    Nelson, G.L.: Sonomorphs: An application of genetic algorithms to growth and development of musical organisms. In: 4th Biennial Art and Technology Symp., pp. 155–169 (March 1993)Google Scholar
  9. 9.
    Husbands, P., Copely, P., Eldridge, A., Mandelis, J.: 1. Evolutionary Computer Music. Springer, London (2007)CrossRefGoogle Scholar
  10. 10.
    Biles, J.A.: 2. Evolutionary Computer Music Springer. Springer, London (2007)Google Scholar
  11. 11.
    Todd, P.M., Loy, D.G.: Music and Connectionism. MIT Press, Cambridge (1991)Google Scholar
  12. 12.
    Chen, C.C.J., Miikkulainen, R.: Creating melodies with evolving recurrent neural networks. In: Proceedings of the 2001 International Joint Conference on Neural Networks (IJCNN-2001, Washington, DC), pp. 2241–2246. IEEE Press, Washington (2001)CrossRefGoogle Scholar
  13. 13.
    Gomez, F., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevolution. In: IJCAI-1999, KAUF-ADDR, KAUF, pp. 1356–1361 (1999)Google Scholar
  14. 14.
    Saravanan, N., Fogel, D.B.: Evolving neural control systems. IEEE Expert, 23–27 (June 1995)Google Scholar
  15. 15.
    Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  16. 16.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10, 99–127 (2002)CrossRefGoogle Scholar
  17. 17.
    Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. JAIR 21, 63–100 (2004)Google Scholar
  18. 18.
    Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines Special Issue on Developmental Systems 8(2), 131–162 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amy K. Hoover
    • 1
  • Michael P. Rosario
    • 1
  • Kenneth O. Stanley
    • 1
  1. 1.Evolutionary Complexity Research Group School of Electrical Engineering and Computer ScienceUniversity of Central FloridaOrlando

Personalised recommendations