Evolved Diffusion Limited Aggregation Compositions

  • Gary Greenfield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4974)

Abstract

Diffusion limited aggregation (DLA) is a simulation technique for modeling dendritic growth. It has seen limited use for artistic purposes. We consider an evolutionary scheme for evolving DLA compositions with multiple seed particles. As a consequence we are led to consider robustness and stability issues related to the use of evolutionary computation whose phenotypes invoke inherently random processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batty, M.: Cities and Complexity. MIT Press, Cambridge (2005)Google Scholar
  2. 2.
    Bourke, P.: Constrained limited diffusion aggregation in 3 dimensions. Computers and Graphics 30(4), 646–649 (2006)CrossRefGoogle Scholar
  3. 3.
    Bourke, P.: Diffusion Limited Aggregtion (accessed March 2007) (2007), http://local.wasp.uwa.edu.au/~pbourke/fractals/dla/
  4. 4.
    Casselman, B.: About the cover Aggregation 22. Notices of the American Mathematical Society 54(6), 800 (2007)MathSciNetGoogle Scholar
  5. 5.
    Gaylord, R., Tyndall, W.: Diffusion limited aggregation. Mathematica in Education 1(3), 6–10 (1992) (accessed October 2007), http://library.wolfram.com/infocenter/Articles/2866/ Google Scholar
  6. 6.
    Greenfield, G.: Composite diffusion limited aggregation paintings. In: Sarhangi, R., Barrallo, J. (eds.) BRIDGES 2007 Conference Proceedings, pp. 15–20 (2007)Google Scholar
  7. 7.
    Halsey, T.: Diffusion-limited aggregation: a model for pattern formation. Physics Today 53(11), 36–47 (2000) (accessed October 2007), http://www.physicstoday.org/pt/vol-53/iss-11/p36.html CrossRefGoogle Scholar
  8. 8.
    Kobayashi, Y., Niitsu, T., Takahashi, K., Shimoida, S.: Mathematical modeling of metal leaves. Mathematics Magazine 76(4), 295–298 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lomas, A.: 2006 Bridges Exhibit of Mathematical Art, London (2006) (accessed October, 2007), http://www.bridgesmathart.org/art-exhibits/bridges06/lomas.html
  10. 10.
    Lomas, A.: Private communication (2006)Google Scholar
  11. 11.
    Long, J.: Modeling dendritic structures for artistic effects. MSc. Thesis University of Saskatchewan (2007) (accessed October 2007), http://www.cs.usask.ca/grads/jsl847/
  12. 12.
    Ramachandran, V., Hirstein, W.: The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies 6(1–2), 15–52 (1999)Google Scholar
  13. 13.
    Silvers, R.: Photomosiacs. Henry Holt and Company, New York (1997)Google Scholar
  14. 14.
    Voss, R.: Fractals in nature: From characterization to simulation. In: Peitgen, H., Saupe, D. (eds.) The Science of Fractal Images, pp. 36–38. Springer, New York (1988)Google Scholar
  15. 15.
    Witten, T., Sander, L.: Diffusion-limited aggregation, a kinematic critical phenomenon. Physical Review Letters 47, 1400–1403 (1981)CrossRefGoogle Scholar
  16. 16.
    Zeki, S.: Inner Vision, An Exploration of Art and the Brain. Oxford University Press, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gary Greenfield
    • 1
  1. 1.University of RichmondRichmondUSA

Personalised recommendations