A Hybrid Denotational Semantics for Hybrid Systems

  • Olivier Bouissou
  • Matthieu Martel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4960)


In this article, we present a model and a denotational semantics for hybrid systems. Our model is designed to be used for the verification of large, existing embedded applications. The discrete part is modeled by a program written in an extension of an imperative language and the continuous part is modeled by differential equations. We give a denotational semantics to the continuous system inspired by what is usually done for the semantics of computer programs and then we show how it merges into the semantics of the whole system. The semantics of the continuous system is computed as the fix-point of a modified Picard operator which increases the information content at each step.


Hybrid System Continuous System Initial Value Problem Maximal Solution Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid systems in charon. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analyses from invariance analyses. In: POPL, pp. 211–224 (2007)Google Scholar
  3. 3.
    Bouissou, O., Martel, M.: A hybrid denotational semantics of hybrid systems - extended version,
  4. 4.
    Bouissou, O., Martel, M.: GRKLib: a guaranteed runge-kutta library. In: International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, IEEE, Los Alamitos (2006)Google Scholar
  5. 5.
    Cousot, P.: Integrating physical systems in the static analysis of embedded control software. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 135–138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM Press, New York (1977)Google Scholar
  7. 7.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Monniaux, A.M.D., Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Cuijpers, P., Reniers, M.: Hybrid process algebra. Journal of Logic and Algebraic Programming 62(2), 191–245 (2005)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Edalat, A., Lieutier, A.: Domain theory and differential calculus. Mathematical Structures in Computer Science 14(6), 771–802 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Edalat, A., Lieutier, A., Pattinson, D.: A computational model for multi-variable differential calculus. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Edalat, A., Pattinson, D.: Denotational Semantics of Hybrid Automata. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 231–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goubault, E., Martel, M., Putot, S.: Asserting the precision of floating-point computations: A simple abstract interpreter. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 209–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of control systems. In: ERTS (2006)Google Scholar
  15. 15.
    Gupta, V., Jagadeesan, R., Saraswat, V.: Computing with continuous change. Science of Computer Programming 30(1–2), 3–49 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Henzinger, T.A.: The theory of hybrid automata. In: Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  17. 17.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43, 540–554 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kowalewski, S., Stursberg, O., Fritz, M., Graf, H., Preuß, I.H.J.: A case study in tool-aided analysis of discretely controlled continuous systems: the two tanks problem. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS 1997. LNCS, vol. 1567, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Martin, K.: A Foundation for Computation. PhD thesis, Department of Mathematics, Tulane University (2000)Google Scholar
  20. 20.
    Mycroft, A.: Abstract interpretation and Optimizing Transformations for Applicative Programs. PhD thesis, University of Edinburgh (1981)Google Scholar
  21. 21.
    Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation 105(1), 21–68 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)zbMATHMathSciNetGoogle Scholar
  23. 23.
    van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and consistent equation semantics of hybrid chi. Journal of Logic and Algebraic Programming 68(1-2), 129–210 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Winskel, G.: The formal semantics of programming languages: an introduction. MIT Press, Cambridge (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Olivier Bouissou
    • 1
  • Matthieu Martel
    • 2
  1. 1.CEA LIST - Laboratoire MeASI, F-91191 Gif-sur-Yvette CedexFrance
  2. 2.ELIAUS-DALI LaboratoryUniversité de Perpignan Via DomitiaPerpignan CedexFrance

Personalised recommendations