Advertisement

Verification of Higher-Order Computation: A Game-Semantic Approach

  • C. -H. L. Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4960)

Abstract

We survey recent developments in an approach to the verification of higher-order computation based on game semantics. Higher-order recursion schemes are in essence (programs of) the simply-typed lambda calculus with recursion, generated from uninterpreted first-order symbols. They are a highly expressive definitional device for infinite structures such as word languages and infinite ranked trees. As applications of a representation theory of innocent strategies based on traversals, we present a recent advance in the model checking of trees generated by recursion schemes, and the first machine characterization of recursion schemes (by a new variant class of higher-order pushdown automata called collapsible pushdown automata). We conclude with some speculative remarks about reachability checking of functional programs. A theme of the work is the fruitful interplay of ideas between the neighbouring fields of semantics and verification.

Keywords

Model Check Computation Tree Functional Program Tree Automaton Recursion Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: International Conference on Concurrency Theory, pp. 135–150 (1997)Google Scholar
  2. 2.
    Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general reference. In: Proceedings of IEEE Symposium on Logic in Computer Science, 1998, Computer Society Press (1998)Google Scholar
  3. 3.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163 (2000)Google Scholar
  4. 4.
    Abramsky, S., McCusker, G.: Linearity, sharing and state: A fully abstract game semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-like languages, Birkhäuser (1997)Google Scholar
  5. 5.
    Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Abramsky, S., McCusker, G.: Game semantics. In: Schwichtenberg, H., Berger, U. (eds.) Logic and Computation: Proceedings of the 1997 Marktoberdorf Summer School, Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: The monadic second order theory of trees given by arbitrary level two recursion schemes is decidable. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: Safety is not a restriction at level 2 for string languages. In: Proceedings of the 8th International Conference on Foundations of Software Science and Computational Structures (FOSSACS 2005). LNCS, vol. 3411, pp. 490–501. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Ball, T., Rajamani, S.K.: The SLAM Project: Debugging system software via static analysis. In: Proc. POPL, pp. 1–3. ACM Press, New York (2002)Google Scholar
  10. 10.
    Blum, W.: The Safe Lambda Calculus. PhD thesis, University of Oxford (in preparation, 2008)Google Scholar
  11. 11.
    Blum, W., Ong, C.-H.L.: Safe lambda calculus. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 39–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Blum, W., Ong, C.-H.L.: Path-correspondence theorems and their applications (preprint, 2008)Google Scholar
  13. 13.
    Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Damm, W.: The IO- and OI-hierarchy. Theoretical Computer Science 20, 95–207 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-hierarchy. Information and Control 71, 1–32 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    de Roever, W.-P., de Bakker, J.W.: A calculus for recursive program schemes. In: Nivat, M. (ed.) Proc. IRIA symposium on Automata, Languages and Programming, North-Holland, Amsterdam (1972)Google Scholar
  18. 18.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proceedings of FOCS 1991, pp. 368–377 (1991)Google Scholar
  19. 19.
    Ghica, D.R., McCusker, G.: Reasoning about Idealized ALGOL Using Regular Languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 103–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Greenland, W.: Game semantics for region analysis. PhD thesis, Oxford University Computing Laboratory (2005)Google Scholar
  21. 21.
    Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. Technical report, Oxford University Computing Laboratory, p. 59 (preprint, 2007), http://users.comlab.ox.ac.uk/luke.ong/
  22. 22.
    Hankin, C., Malacaria, P.: A new approach to control flow analysis. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 95–108. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with BLAST. In: Proc. 10th SPIN Workshop (2003)Google Scholar
  24. 24.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  25. 25.
    Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I. Models, observables and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and universal game model. Information and Computation 163, 285–408 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Walukiewicz, I.: Model Checking CTL Properties of Pushdown Systems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe Grammars and Panic Automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)Google Scholar
  30. 30.
    Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1998)Google Scholar
  31. 31.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 12, 38–43 (1976)Google Scholar
  32. 32.
    Might, M., Chambers, B., Shivers, O.: Model Checking Via ΓCFA. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 59–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Murawski, A., Walukiewicz, I.: Third-Order Idealized Algol with Iteration Is Decidable. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer, Heidelberg (2005)Google Scholar
  34. 34.
    Murawski, A.S., Ong, C.-H.L., Walukiewicz, I.: Idealized Algol with ground recursion and DPDA equivalence. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 917–929. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Nivat, M.: On the interpretation of recursive polyadic program schemes. Symp. Math. XV, 255–281 (1975)MathSciNetGoogle Scholar
  36. 36.
    Ong, C.-H.L.: Observational equivalence of third-order Idealized Algol is decidable. In: Proceedings of IEEE Symposium on Logic in Computer Science, Copenhagen, Denmark, July 22-25, 2002, pp. 245–256. Computer Society Press (2002)Google Scholar
  37. 37.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: Proceedings 21st Annual IEEE Symposium on Logic in Computer Science, Seattle, pp. 81–90. Computer Society Press (2006), users.comlab.ox.ac.uk/luke.ong/
  38. 38.
    Padovani, V.: Decidability of all minimal models. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 201–215. Springer, Heidelberg (1996)Google Scholar
  39. 39.
    Padovani, V.: Decidability of fourth-order matching. Math. Struct. in Comp. Science 10, 361–372 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Maths. Soc. 141, 1–35 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Schubert, A.: A linear interpolation for the higher-order matching problem. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 441–452. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  42. 42.
    Shivers, O.: Control-flow analysis of higher-order languages. PhD thesis, Carnegie-Mellon University (1991)Google Scholar
  43. 43.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. IEEE Annual Symposium on Logic in Computer Science, IEEE Computer Society Press (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. -H. L. Ong
    • 1
  1. 1.Oxford University Computing Laboratory 

Personalised recommendations