Advertisement

Open Bisimulation for the Concurrent Constraint Pi-Calculus

  • Maria Grazia Buscemi
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4960)

Abstract

The concurrent constraint pi-calculus (cc-pi-calculus) has been introduced as a model for concluding Service Level Agreements. The cc-pi calculus combines the synchronous communication paradigm of process calculi with the constraint handling mechanism of concurrent constraint programming. While in the original presentation of the calculus a reduction semantics has been proposed, in this work we investigate the abstract semantics of cc-pi processes. First, we define a labelled transition system of the calculus and a notion of open bisimilarity à la pi-calculus that is proved to be a congruence. Next, we give a symbolic characterisation of bisimulation and we prove that the two semantics coincide. Essentially, two processes are open bisimilar if they have the same stores of constraints - this can be statically checked - and if their moves can be mutually simulated. A key idea of the symbolic transition system is to have ‘contextual’ labels, i.e. labels specifying that a process can evolve only in presence of certain constraints. Finally, we show that the polyadic Explicit Fusions calculus introduced by Gardner and Wischik can be translated into monadic cc-pi and that such a transition preserves open bisimilarity. The mapping exploits fusions and tuple unifications as constraints.

Keywords

Service Level Agreement Label Transition System Process Calculus Reduction Semantic Structural Congruence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL 2001: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 104–115. ACM Press, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms. In: ECAI, pp. 63–67. IOS Press, Amsterdam (2006)Google Scholar
  3. 3.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. Journal of the ACM 44(2), 201–236 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boreale, M., De Nicola, R.: A symbolic semantics for the pi-calculus. Inf. Comput. 126(1), 34–52 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Diaz, J.F., Rueda, C., Valencia, F.: A calculus for concurrent processes with constraints. CLEI Electronic Journal 1(2) (1998)Google Scholar
  7. 7.
    Gilbert, D., Palamidessi, C.: Concurrent Constraint Programming with Process Mobility. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 463–477. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comp. Sci. 138, 353–389 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform. and Comput., 100(1), 1–40,41–77 (1992)Google Scholar
  10. 10.
    Palamidessi, C., Valencia, F.: A Temporal Concurrent Constraint Programming Calculus. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 302–316. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Rudeanu, S., Vaida, D.: Semirings in operations research and computer science. Fundam. Inf. 61(1), 61–85 (2004)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Inform. 33, 69–97 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Saraswat, V.: Concurrent Constraint Programming. PhD thesis, Carnegie Mellon University (1993)Google Scholar
  14. 14.
    Saraswat, V., Rinard, M.: Concurrent constraint programming. In: Proc. POPL 1990. ACM Press (1990)Google Scholar
  15. 15.
    Wischik, L., Gardner, P.: Strong Bisimulation for the Explicit Fusion Calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 484–498. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Wischik, L., Gardner, P.: Explicit fusions. Theoret. Comput. Sci. 340(3), 606–630 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maria Grazia Buscemi
    • 1
  • Ugo Montanari
    • 2
  1. 1.IMT Lucca Institute for Advanced StudiesItaly
  2. 2.Dipartimento di InformaticaUniversity of PisaItaly

Personalised recommendations