The Benefits of Embedded Intelligence – Tasks and Applications for Ubiquitous Computing in Logistics

  • Reiner Jedermann
  • Walter Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4952)

Abstract

The concept of autonomous cooperating processes is an approach to solve complex logistical planning tasks by representing each object in the transport chain by a separate independent software unit. In general, these software units or agents are applied in a server network. Technologies from the field of the Internet of Things like wireless communication and RFID enable that software execution can be shifted to deeper system layers, even at the level of single freight items. This article examines the ancillary conditions and consequences of this shift. It focuses on whether the introduction of the intelligent parcel or vehicle is advantageous compared to server based planning. The second half of this article describes transport logistic examples for networks of autonomous objects with embedded intelligence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freitag, M., Herzog, O., Scholz-Reiter, B.: Selbststeuerung logistischer Prozesse - Ein Paradigmenwechsel und seine Grenzen. Industrie Management 20(1), 23–27 (2004)Google Scholar
  2. 2.
    Windt, K., Hülsmann, M.: Changing Paradigms in Logistics - Understanding the Shift from Conventional Control to Autonomous Cooperation and Control. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Cooperation & Control - The Impact of Autonomy on Management, Information, Communication, and Material Flow, pp. 4–16. Springer, Berlin (2007)Google Scholar
  3. 3.
    Böse, F., Windt, K.: Catalogue of Criteria for Autonomous Control. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Cooperation and Control in Logistics – The Impact on Management, Information and Communication and Material Flow, pp. 57–72. Springer, Berlin (2007)CrossRefGoogle Scholar
  4. 4.
    Langer, H., Timm, I.J., Schönberger, J., Kopfer, H.: Integration von Software-Agenten und Soft-Computing-Methoden für die Transportplanung. In: Nissen, V., Petsch, M. (eds.) (Hrsg.): Softwareagenten und Soft Computing im Geschäftsprozessmanagement. Innovative Methoden und Werkzeuge zur Gestaltung, Steuerung und Kontrolle von Geschäftsprozessen in Dienstleistung, Verwaltung und Industrie, pp. 39–51. Cuvillier Verlag, Göttingen (2006)Google Scholar
  5. 5.
    Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. The Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  6. 6.
    Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade – a white paper. In: TILAB EXP in search of innovation, Italy, vol. 3 (2003)Google Scholar
  7. 7.
    Lorenz, M., Ober-Blöbaum, C., Herzog, O.: Planning for Autonomous Decision-Making in a Logistic Scenario. In: Proceedings of the 21st European Conference on Modelling and Simulation, Prague, CZ, pp. 140–145 (2007)Google Scholar
  8. 8.
    Thangiah, S.R., Shmygelska, O., Mennell, W.: An agent architecture for vehicle routing problems. In: Proceedings of the 2001 ACM symposium on Applied computing, pp. 517–521. ACM Press, New York (2001), http://doi.acm.org/10.1145/372202.372445 CrossRefGoogle Scholar
  9. 9.
    Leong, H.W., Liu, M.: A multi-agent algorithm for vehicle routing problem with time window. In: Proceedings of the 2006 ACM symposium on Applied computing, Dijon, France, pp. 106–111 (2006), http://doi.acm.org/10.1145/1141277.1141301
  10. 10.
    Sarma, S., Engels, D.W.: On the Future of RFID Tags and Protocols, technical report, Auto ID Center MIT-AUTOID-TR-018 (2003)Google Scholar
  11. 11.
    Turbo-Tag Data Logger by Sealed Air Coperation, USA, http://www.turbo-tag.com
  12. 12.
    Clarke, R.H., Twede, D., Tazelaar, J.R., Boyer, K.K.: Radio frequency identification (RFID) performance: the effect of tag orientation and package contents. Packaging Technology and Science 19(1), 45–54 (2005), http://dx.doi.org/10.1002/pts.714 CrossRefGoogle Scholar
  13. 13.
    TmoteSky sensor node from Moteiv, http://www.moteiv.com/products/tmotesky.php
  14. 14.
    Jedermann, R., Behrens, C., Westphal, D., Lang, W.: Applying autonomous sensor systems in logistics; Combining Sensor Networks, RFIDs and Software Agents. Sensors and Actuators A (Physical) 132(8), 370–375 (2006), http://dx.doi.org/10.1016/j.sna.2006.02.008 CrossRefGoogle Scholar
  15. 15.
    Scholz-Reiter, B., Rekersbrink, H., Freitag, M.: Internet routing protocols as an autonomous control approach for transport networks. In: Teti, R. (ed.) Proc. 5th CIRP international seminar on intelligent computation in manufacturing engineering, pp. 341–345 (2006)Google Scholar
  16. 16.
    Tijskens, L.M.M., Polderdijk, J.J.: A generic model for keeping quality of vegetable produce during storage and distribution. Agricultural Systems 51(4), 431–452 (2006)CrossRefGoogle Scholar
  17. 17.
    Schouten, R.E., Huijben, T.P.M., Tijskens, L.M.M., van Kooten, O.: Managing biological variance. Acta Hort (ISHS) 712, 131–138 (2006), http://www.actahort.org/books/712/712_12.htm Google Scholar
  18. 18.
    Jedermann, R., Edmond, J.P., Lang, W.: Shelf life prediction by intelligent RFID. In: Dynamics in Logistics - First International Conference, LDIC 2007, Bremen, Germany, August 2007, Proceedings. Springer, Berlin, pp. 229–237 (to appear, 2008) Google Scholar
  19. 19.
    Jedermann, R., Behrens, C., Laur, R., Lang, W.: Intelligent containers and sensor networks, Approaches to apply autonomous cooperation on systems with limited resources. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Cooperation & Control in Logistics - The Impact on Management, Information and Communication and Material Flow, pp. 365–392. Springer, Berlin (2007)CrossRefGoogle Scholar
  20. 20.
    Homepage of the project ‘intelligent Container’, http://www.intelligentcontainer.com
  21. 21.
    Moreno, A., Valls, A., Viejo, A.: Using JADE-LEAP to implement agents in mobile devices. In: TILAB EXP in search of innovation, Italy (2003), http://jade.tilab.com/papers-exp.htm
  22. 22.
    OSGI Alliance Website, http://www.osgi.org
  23. 23.
    Jedermann, R., Antunez, L.J., Lang, W., Lorenz, M., Gehrke, J.D., Herzog, O.: Dynamic Decision making on Embedded Platforms in Transport Logistics. In: Dynamics in Logistics - First International Conference, LDIC 2007 Bremen, Germany, August 2007. Proceedings, pp. 189–197. Springer, Berlin (to appear, 2008)Google Scholar
  24. 24.
    Scheer, P.P.: Optimising supply chains using traceability systems. In: Smith, I., Furness, A. (eds.) Improving traceability in food processing and distribution. Woodhead publishing limited, Cambridge, England, pp. 52–64 (2006)Google Scholar
  25. 25.
    Pelletier, W., Emond, J.P., Chau, K.V.: Effects of post harvest temperature regimes on quality of strawberries. Report 1. University of Florida, p. 48 (2006)Google Scholar
  26. 26.
    Emond, J.P.: Quantifying RFID’s Cold Chain Benefits. In: Fifth RFID Academic Convocation, Orlando, Florida (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Reiner Jedermann
    • 1
  • Walter Lang
    • 1
  1. 1.Institute for Microsensors, actors and systemsUniversity of BremenBremenGermany

Personalised recommendations