Tandem: A Context-Aware Method for Spontaneous Clustering of Dynamic Wireless Sensor Nodes

  • Raluca Marin-Perianu
  • Clemens Lombriser
  • Paul Havinga
  • Hans Scholten
  • Gerhard Tröster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4952)


Wireless sensor nodes attached to everyday objects and worn by people are able to collaborate and actively assist users in their activities. We propose a method through which wireless sensor nodes organize spontaneously into clusters based on a common context. Provided that the confidence of sharing a common context varies in time, the algorithm takes into account a window-based history of believes. We approximate the behaviour of the algorithm using a Markov chain model and we analyse theoretically the cluster stability. We compare the theoretical approximation with simulations, by making use of experimental results reported from field tests. We show the tradeoff between the time history necessary to achieve a certain stability and the responsiveness of the clustering algorithm.


Sensor Node Wireless Sensor Network Time History Root Node Communication Overhead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antifakos, S., Schiele, B., Holmquist, L.E.: Grouping mechanisms for smart objects based on implicit interaction and context proximity. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 207–208. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Basagni, S.: Distributed clustering for ad hoc networks. In: ISPAN 1999, pp. 310–315. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  3. 3.
    Bouhafs, F., Merabti, M., Mokhtar, H.: A semantic clustering routing protocol for wireless sensor networks. In: Consumer Communications and Networking Conference, pp. 351–355. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  4. 4.
    Gluhak, A., Presser, M., Zhu, L., Esfandiyari, S., Kupschick, S.: Towards mood based mobile services and applications. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds.) EuroSSC 2007. LNCS, vol. 4793, pp. 159–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., He, T., Stankovic, J.A., Abdelzaher, T., Krogh, B.H.: Lightweight detection and classification for wireless sensor networks in realistic environments. In: SenSys, pp. 205–217. ACM Press, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.-W.: Smart-its friends: A technique for users to easily establish connections between smart artefacts. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 116–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Lester, J., Hannaford, B., Borriello, G.: Are You with Me? - using accelerometers to determine if two devices are carried by the same person. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 33–50. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., Moulton, S.: Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing 03(4), 16–23 (2004)CrossRefGoogle Scholar
  9. 9.
    Marin-Perianu, M., Havinga, P.J.M.: D-FLER: A distributed fuzzy logic engine for rule-based wireless sensor networks. In: Ichikawa, H., Cho, W.-D., Satoh, I., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Marin-Perianu, R.S., Marin-Perianu, M., Havinga, P.J.M., Scholten, J.: Movement-based group awareness with wireless sensor networks. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 298–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Mayrhofer, R., Gellersen, H.: Shake well before use: Authentication based on accelerometer data. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 144–161. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Siegemund, F.: A context-aware communication platform for smart objects. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 69–86. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Stiefmeier, T., Lombriser, C., Roggen, D., Junker, H., Ogris, G., Tröster, G.: Event-based activity tracking in work environments. In: Proceedings of the 3rd International Forum on Applied Wearable Computing (IFAWC) (March 2006)Google Scholar
  14. 14.
    Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel and Distributed Systems 13(1), 14–25 (2002)CrossRefGoogle Scholar
  15. 15.
    Strohbach, M., Gellersen, H.: Smart clustering - networking smart objects based on their physical relationships. In: Proceedings of the 5th IEEE International Workshop on Networked Appliances, pp. 151–155. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  16. 16.
    Varga, A.: The omnet++ discrete event simulation system. In: ESM 2001, Prague, Czech Republic (June 2001)Google Scholar
  17. 17.
    Wang, J., Chen, G., Kotz, D.: A sensor fusion approach for meeting detection. In: MobiSys 2004 Workshop on Context Awareness (June 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Raluca Marin-Perianu
    • 1
  • Clemens Lombriser
    • 2
  • Paul Havinga
    • 1
  • Hans Scholten
    • 1
  • Gerhard Tröster
    • 2
  1. 1.Pervasive Systems GroupUniversity of TwenteThe Netherlands
  2. 2.Wearable Computing LabETH Zürich 

Personalised recommendations