Advertisement

ICAME 2007 pp 1167-1172 | Cite as

Effect of cooling conditions on the magnetic structure of multiferroic BiFeO3 synthesized by mechanical activation

  • Harikishan Thota
  • Ashish Garg
  • Brajesh Pandey
  • H. C. Verma
Conference paper

Abstract

An attempt to synthesize multiferroic BiFeO3 by mechanical milling Bi2O3 and Fe2O3 powders showed very interesting results. 100 h milled powder was calcined at different temperatures and it was found that the BiFeO3 phase forms at 700°C followed by slow cooling. The magnetic behaviour and phase formation crucially depended on the cooling conditions. The samples were cooled from the calcinations temperature of 700°C in four different ways and Mössbauer measurements revealed different kinds of phases formed in these conditions. It was found that slow cooling favours BiFeO3 formation while rapid cooling leads to retention of Fe2O3. This was corroborated by differences in the magnetic ordering of phases as revealed by Mössbauer spectroscopy.

Keywords

Magnetic structure Multiferroic BiFeO3 Mechanical activation Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Teague, J.R., Gerson, R., James, W.J.: Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970)CrossRefADSGoogle Scholar
  2. 2.
    Li, J., Wang, J., Wuttig, M., Ramesh, R., Wang, N., Ruette, B., Pyatakov, A.P., Zvezdin, A.K., Viehland, D.: Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Wang, Y.P., Zhou, L., Zhang, M.F., Chen, X.Y., Liu, J.M., Liu, Z.G.: Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Sosnowska, I., Neumaier, T.P., Steichele, E.: Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982)CrossRefADSGoogle Scholar
  5. 5.
    Kumar, M.M., Palkar, V.R., Srinivas, K., Suryanarayana, S.V.: Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764–2766 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Pradhan, A.K., Zhang, K., Hunter, D., Dadson, J.B., Loutts, G.B., Bhattacharya, P., Katiyar, R., Zhang, J., Sellmyer, D.J.: Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Ederer, C., Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Soon, H.P., Xue, J.M., Wang, J.: Dielectric behaviors of Pb1 − 3x/2LaxTiO3 derived from mechanical activation. J. Appl. Phys. 95, 4981–4988 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Yu, T., Shen, Z.X., Xue, J.M., Wang, J.: Effects of mechanical activation on the formation of PbTiO3 from amorphous Pb–Ti–O precursor. J. Appl. Phys. 93, 3470–3474 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Santos, I.A., Grande, H.L.C., Freitas, V.F., de Medeiros, S.N., Paesano, A. Jr., Cotica, L.F., Radovanovic, E.: Structural, microstructural and Mössbauer spectral study of the BiFe1 − xMnxO3 mechanosynthesized system. J. Non-Cryst. Solids 352, 3721–3724 (2006)CrossRefADSGoogle Scholar
  11. 11.
    De Sitter, J., Dauwe, C., De Grave, E., Govaert, A.: On the Mössbauer parameters in BiFeO3. Solid State Commun. 18, 645–646 (1976)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Harikishan Thota
    • 1
  • Ashish Garg
    • 1
  • Brajesh Pandey
    • 2
  • H. C. Verma
    • 2
  1. 1.Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of PhysicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations