PET Radiopharmaceuticals in Nuclear Cardiology: Current Status and Limitations

  • James R. Ballinger


PET was developed in the 1970s primarily for studies of the brain. However, interest in cardiac PET grew in the 1980s, leading to more widespread availability of whole body PET scanners. This in turn contributed to the application of PET in oncology, which mushroomed in the 1990s. Growth in cardiac PET has, however, been more modest and shows great variation among countries. Many cardiac PET studies are performed using radiopharmaceuticals developed for other purposes, primarily 18F-fluorodeoxyglucose and 15O-water, although a significant fraction of studies use the strontium-82/ rubidium-82 generator developed specifically for cardiac PET. The properties of PET radiopharmaceuticals currently in clinical use for myocardial perfusion and metabolism will be reviewed (Tables 32.1 and 32.2), followed by discussion of agents which may become more widely used in the future.


Positron Emission Tomography Myocardial Perfusion Myocardial Perfusion Imaging Herpes Simplex Virus Type Nuclear Cardiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anonymous (2000) CardioGen-82 Rubidium Rb 82 Generator product monograph. Bracco Diagnostics Inc., Princeton NJ.Google Scholar
  2. 2.
    Selwyn AP, Allan RM, L’Abbate A et al. (1982) Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 50:112–121.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldstein RA, Mullani NA, Marani SK, Fisher DJ, O’Brien HA Jr, Loberg MD (1983) Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacological interventions. J Nucl Med 24:907–915.PubMedGoogle Scholar
  4. 4.
    Machac J (2005) Cardiac positron emission tomography imaging. Semin Nucl Med 35:17–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Alvarez-Diez TM, deKemp R, Beanlands R, Vincent J (1999) Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl Radiat Isot 50:1015–1023. PubMedCrossRefGoogle Scholar
  6. 6.
    Walsh WF, Fill HR, Harper PV (1977) Nitrogen-13-labeled ammonia for myocardial imaging. Semin Nucl Med 7:59–66. PubMedCrossRefGoogle Scholar
  7. 7.
    Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE (1979) Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 43:209–218.PubMedCrossRefGoogle Scholar
  8. 8.
    Hutchins GD (1997) Quantitative evaluation of myocardial blood flow with [13N]ammonia. Cardiology 88:106–115. PubMedCrossRefGoogle Scholar
  9. 9.
    Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN (1989) Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652. PubMedCrossRefGoogle Scholar
  10. 10.
    Visser FC (2001) Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate. Coron Artery Dis 12:S12–S18. PubMedGoogle Scholar
  11. 11.
    Choi Y, Brunken RC, Hawkins RA et al. (1993) Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 20:308–318. PubMedCrossRefGoogle Scholar
  12. 12.
    Schoder H, Campisi R, Ohtake T et al. (1999) Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 33:1328–1337. PubMedCrossRefGoogle Scholar
  13. 13.
    Tillisch J, Brunken R, Marshall R et al. (1986) Reversibility of cardiac wall motion abnormalities predicted by positron emission tomography. N Engl J Med 314:884–888.PubMedGoogle Scholar
  14. 14.
    Melin JA, Vanoverschelde JL, Bol A, Heyndrickx G, Wijns W (1994) The use of carbon 11-labeled acetate for assessment of aerobic metabolism. J Nucl Cardiol 1:S48–S57. PubMedCrossRefGoogle Scholar
  15. 15.
    Schelbert HR, Phelps ME, Huang SC et al. (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272.PubMedGoogle Scholar
  16. 16.
    European Directorate for the Quality of Medicines (2002) European Pharmacopoeia, 4th edn.Google Scholar
  17. 17.
    Meyer GJ, Waters SL, Coenen HH, Luxen A, Maziere B, Langstrom B (1995) PET radiopharmaceuticals in Europe: Current use and data relevant for the formulation of summaries of product characteristics (SPCs). Eur J Nucl Med 22:1420–1432.PubMedCrossRefGoogle Scholar
  18. 18.
    Brihaye C, Depresseux JC, Comar D (1995) Radiation dosimetry for bolus administration of oxygen-15-water. J Nucl Med 36:651–656. PubMedGoogle Scholar
  19. 19.
    Jones SC, Alavi A, Christman D, Montanez I, Wolf AP, Reivich M (1982) The radiation dosimetry of 2[F-18]fluoro-2-deoxy-D-glucose in man. J Nucl Med 23:613–617. PubMedGoogle Scholar
  20. 20.
    Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S (1991) Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med 32:699–706. PubMedGoogle Scholar
  21. 21.
    Seltzer MA, Jahan SA, Sparks R et al. (2004) Radiation dose estimates in humans for 11C-acetate whole-body PET. J Nucl Med 45:1233–1236. PubMedGoogle Scholar
  22. 22.
    Studenov AR, Berridge MS (2001) Synthesis and properties of 18F-labeled potential myocardial blood flow tracers. Nucl Med Biol 28:683–693. PubMedCrossRefGoogle Scholar
  23. 23.
    Wallhaus TR, Lacy J, Stewart R et al. (2001) Copper-62-pyruvaldehyde bis(N-methyl-thiosemicarbazone) PET imaging in the detection of coronary artery disease in humans. J Nucl Cardiol 8:67–74. PubMedCrossRefGoogle Scholar
  24. 24.
    Tsang BW, Mathias CJ, Green MA (1993) A gallium-68 radiopharmaceutical that is retained in myocardium: 68Ga[(4,6-MeO2sal)2BAPEN]+. J Nucl Med 34:1127–1131. PubMedGoogle Scholar
  25. 25.
    Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160. PubMedGoogle Scholar
  26. 26.
    Hofmann M, Maecke H, Borner R et al. (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: Preliminary data. Eur J Nucl Med 28:1751–1757.PubMedCrossRefGoogle Scholar
  27. 27.
    Maziere M, Comar D, Godot JM, Collard P, Cepeda C, Naquet R (1981) In vivo characterization of myocardium muscarinic receptors by positron emission tomography. Life Sci 29:2391–2397.PubMedCrossRefGoogle Scholar
  28. 28.
    Langer O, Halldin C (2002) PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 29:416–434. PubMedCrossRefGoogle Scholar
  29. 29.
    Fallen EL, Coates G, Nahmias C et al. (1999) Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 137:863–869. PubMedCrossRefGoogle Scholar
  30. 30.
    de Jong RM, Blanksma PK, van Waarde A, van Veldhuisen DJ (2002) Measurement of myocardial β-adrenoreceptor density in clinical studies: a role for positron emission tomography? Eur J Nucl Med 29:88–97.CrossRefGoogle Scholar
  31. 31.
    Sinusas AJ (1999) The potential for myocardial imaging with hypoxia markers. Semin Nucl Med 29:330–338.PubMedCrossRefGoogle Scholar
  32. 32.
    Takahashi N, Fujibayashi Y, Yonekura Y et al. (2001) Copper-62 ATSM as a hypoxic tissue tracer in myocardial ischemia. Ann Nucl Med 15:293–296.PubMedCrossRefGoogle Scholar
  33. 33.
    Blankenberg FG, Strauss HW (2001) Noninvasive strategies to image cardiovascular apoptosis. Cardiol Clin 19:165–172. PubMedCrossRefGoogle Scholar
  34. 34.
    Zijlstra S, Gunawan J, Burchert W (2003) Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot 58:201–207.PubMedCrossRefGoogle Scholar
  35. 35.
    Glaser M, Collingridge DR, Aboagye EO et al. (2003) Iodine-124 labelled Annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl Radiat Isot 58:55–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Mukherjee D (2004) Current clinical perspectives on myocardial angiogenesis. Mol Cell Biochem 264:157–167. PubMedCrossRefGoogle Scholar
  37. 37.
    McDonald DM, Choyke PL (2003) Imaging of angiogenesis: From microscope to clinic. Nat Med 9:713–725. PubMedCrossRefGoogle Scholar
  38. 38.
    Chen X, Sievers E, Hou Y et al. (2005) Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 7:271–279.PubMedCrossRefGoogle Scholar
  39. 39.
    Haubner R, Weber WA, Beer AJ et al. (2005) Noninvasive visualisation of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2:e70.PubMedCrossRefGoogle Scholar
  40. 40.
    Collingridge DR, Carroll VA, Glaser M et al. (2002) The development of [124I]iodinated-VG76e: A novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 62:5912–5919. PubMedGoogle Scholar
  41. 41.
    Davenport AP, Maguire JJ (2001) The endothelin system in human saphenous vein graft disease. Curr Opin Pharmacol 1:176–182.PubMedCrossRefGoogle Scholar
  42. 42.
    Johnstrom P, Fryer TD, Richards HK et al. (2005) Positron emission tomography using 18F-labelled endothelin-1 reveals prevention of binding to cardiac receptors owing to tissue-specific clearance by ETB receptors in vivo. Br J Pharmacol 144:115–122.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu JC, Chen IY, Wang Y et al. (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110:685–691. PubMedCrossRefGoogle Scholar
  44. 44.
    Simoes MV, Miyagawa M, Reder S et al. (2005) Myocardial kinetics of reporter probe 124I-FIAU in isolated perfused rat hearts after in vivo adenoviral transfer of herpes simplex virus type 1 thymidine kinase reporter gene. J Nucl Med 46:98–105. PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • James R. Ballinger
    • 1
  1. 1.Nuclear Medicine DepartmentGuy’s & St. Thomas’ HospitalsLondonUK

Personalised recommendations