Evolving Proactive Aggregation Protocols

  • Thomas Weise
  • Michael Zapf
  • Kurt Geihs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4971)


We present an approach for the automated synthesis of proactive aggregation protocols using Genetic Programming and discuss major decisions in modeling and simulating distributed aggregation protocols. We develop a genotype, which is an abstract specification form for aggregation protocols. Finally we show the evolution of a distributed average protocol under various conditions to demonstrate the utility of our approach.


Sensor Network State Vector Genetic Program Aggregate Function Symbolic Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weise, T., Geihs, K.: Genetic programming techniques for sensor networks. In: 5. GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze”, Stuttgart, Germany, pp. 21–25 (2006)Google Scholar
  2. 2.
    Weise, T., Geihs, K.: Dgpf – an adaptable framework for distributed multi-objective search algorithms applied to the genetic programming of sensor networks. In: 2nd International Conference on Bioinspired Optimization Methods and their Application, BIOMA 2006, pp. 157–166. Ljubljana, Slovenia (2006)Google Scholar
  3. 3.
    Weise, T., Geihs, K., Baer, P.A.: Genetic Programming for Proactive Aggregation Protocols. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 167–173. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    van Renesse, R.: The Importance of Aggregation. In: Schiper, A., Shvartsman, M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Computing. LNCS, vol. 2584, pp. 87–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chong, C.-Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)Google Scholar
  6. 6.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)CrossRefGoogle Scholar
  7. 7.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of 44th Symposium on Foundations of Computer Science (FOCS 2003), Cambridge, USA, pp. 482–491. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  8. 8.
    Koza, J.R.: Genetic Programming, On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992), ISBN: 0262111705zbMATHGoogle Scholar
  9. 9.
    Nguyen, X.H., et al.: Solving the symbolic regression problem with tree-adjunct grammar guided genetic programming: the comparative results. In: IEEE Congress on Evolutionary Computation, CEC 2002, Honolulu, USA, pp. 1326–1331 (2002)Google Scholar
  10. 10.
    Lopes, H.S., Weinert, W.R.: EGIPSYS: an enhanced gene expression programming approach for symbolic regression problems. Int. J. of Ap. Math. and Com. Sci. 14 (2004)Google Scholar
  11. 11.
    Weise, T.: Global Optimization Algorithms – Theory and Application (2007),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Weise
    • 1
  • Michael Zapf
    • 1
  • Kurt Geihs
    • 1
  1. 1.University of KasselKasselGermany

Personalised recommendations