Advertisement

Replicating Web Services for Scalability

  • Mario Bravetti
  • Stephen Gilmore
  • Claudio Guidi
  • Mirco Tribastone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4912)

Abstract

Web service instances are often replicated to allow service provision to scale to support larger population sizes of users. However, such systems are difficult to analyse because the scale and complexity inherent in the system itself poses challenges for accurate qualitative or quantitative modelling. We use two process calculi cooperatively in the analysis of an example Web service replicated across many servers. The SOCK calculus is used to model service-oriented aspects closely and the PEPA calculus is used to analyse the performance of the system under increasing load.

Keywords

Content Server Service Engine Average Queue Length Process Calculus Mirror Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: Sock: A calculus for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java Orchestration Language Interpreter Engine. In: Proceedings of CoOrd 2006, ENTCS (2006)Google Scholar
  4. 4.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  5. 5.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, Torino, Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  6. 6.
    Holton, D.: A PEPA specification of an industrial production cell. The Computer Journal 38(7), 542–551 (1995)CrossRefGoogle Scholar
  7. 7.
    Forneau, J., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular networks using PEPA. Performance Evaluation 50(2–3), 83–99 (2002)CrossRefGoogle Scholar
  8. 8.
    Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Enhancing the effective utilisation of Grid clusters by exploiting on-line performability analysis. In: Proceedings of CCGrid workshop on Grid Performability (CCGrid Performability 2005), Cardiff, Wales, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  9. 9.
    Duguid, A.: Coping with the parallelism of BitTorrent: Conversion of PEPA to ODEs in dealing with state space explosion. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 156–170. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Bradley, J., Gilmore, S., Hillston, J.: Analysing distributed Internet worm attacks using continuous state-space approximation of process algebra models. J. Comput. System Sci. (to appear, 2007), doi:10.1016/j.jcss.2007.07.005Google Scholar
  11. 11.
    Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based distributed e-learning and course management system. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 156–170. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)CrossRefGoogle Scholar
  14. 14.
    Tribastone, M.: The PEPA Plug-in Project. In: Proceedings of the 4th International Conference on the Quantitative Evaluation of Systems (QEST 2007), pp. 53–54. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  15. 15.
    Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with Matlab. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mario Bravetti
    • 1
  • Stephen Gilmore
    • 2
  • Claudio Guidi
    • 1
  • Mirco Tribastone
    • 2
  1. 1.University of Bologna 
  2. 2.University of Edinburgh 

Personalised recommendations