Relational Sequence Learning

  • Kristian Kersting
  • Luc De Raedt
  • Bernd Gutmann
  • Andreas Karwath
  • Niels Landwehr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4911)


Sequential behavior and sequence learning are essential to intelligence. Often the elements of sequences exhibit an internal structure that can elegantly be represented using relational atoms. Applying traditional sequential learning techniques to such relational sequences requires one either to ignore the internal structure or to live with a combinatorial explosion of the model complexity. This chapter briefly reviews relational sequence learning and describes several techniques tailored towards realizing this, such as local pattern mining techniques, (hidden) Markov models, conditional random fields, dynamic programming and reinforcement learning.


Hide Markov Model Markov Decision Process Relational Sequence Ground Atom Block World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search toll. Journal of Molecular Biology 215(3), 403–410 (1990)Google Scholar
  2. 2.
    Bellman, D.P.: Dynamic Programming. Princeton University Press, Princeton (1957)Google Scholar
  3. 3.
    Blockeel, H., De Raedt, L.: Top-down Induction of First-order Logical Decision Trees. Artificial Intelligence 101(1–2), 285–297 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruynooghe, M., De Raedt, L., Lee, S.D., Troncon, R.: Mining logical sequences. Technical report, Department of Computer Science, Katholieke Universiteit Leuven (forthcoming, 2007)Google Scholar
  5. 5.
    Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, ch. 22 pp. 345–352. Nat. Biomedical Research Foundation (1978)Google Scholar
  6. 6.
    Dietterich, T., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via gradient tree boosting. In: Proc. 21st International Conf. on Machine Learning, pp. 217–224. ACM Press, New York (2004)Google Scholar
  7. 7.
    Gorodkin, J., Heyer, L.J., Brunak, S., Stormo, G.D.: Displaying the information contents of structural RNA alignments: The structure logos. CABIOS 13(6), 583–586 (1997)Google Scholar
  8. 8.
    Gough, J., Karplus, K., Hughey, R., Chothia, C.: Assignment of homology to genome sequences using a library of hidden markov models that represent all proteins of known structure. JMB 313(4), 903–919 (2001)CrossRefGoogle Scholar
  9. 9.
    Greenberg, S.: Using unix: Collected traces of 168 users. Research Report 88/333/45, Department of Computer Science, University of Calgary, Calgary, Canada (1988)Google Scholar
  10. 10.
    Gutmann, B., Kersting, K.: Tildecrf: Conditional random fields for logical sequences. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 174–185. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. 89, 10915–10919 (1992)CrossRefGoogle Scholar
  12. 12.
    Horváth, T., Wrobel, S., Bohnebeck, U.: Relational Instance-Based learning with Lists and Terms. Machine Learning Journal 43(1/2), 53–80 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hubbard, T., Murzin, A., Brenner, S., Chotia, C.: SCOP: A structural classification of proteins database. NAR 27(1), 236–239 (1997)CrossRefGoogle Scholar
  14. 14.
    Karwath, A., Kersting, K.: Relational sequences alignments and logos. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 290–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kersting, K., De Raedt, L.: Logical Markov Decision Programs and the Convergence of Logical TD(λ). In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 180–197. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Kersting, K., De Raedt, L., Raiko, T.: Logical Hidden Markov Models. Journal of Artificial Intelligence Research (JAIR) 25, 425–456 (2006)Google Scholar
  17. 17.
    Kersting, K., Van Otterlo, M., De Raedt, L.: Bellman goes Relational. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), Banff, Alberta, Canada, July 4–8, 2004, pp. 465–472 (2004)Google Scholar
  18. 18.
    Kersting, K., Raiko, T., Kramer, S., De Raedt, L.: Towards discovering structural signatures of protein folds based on logical hidden markov models. In: Proceedings of the Pacific Symposium on Biocomputing (PSB 2003), pp. 192–203 (2003)Google Scholar
  19. 19.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)Google Scholar
  20. 20.
    Landwehr, N., De Raedt, L.: r-grams: Relational Grams. In: Proceedings of the Twentieth Joint International Conference on Artificial Intelligence (IJCAI 2007), AAAI Press, Menlo Park (2007)Google Scholar
  21. 21.
    Lee, S.D., De Raedt, L.: Mining Logical Sequences Using SeqLog. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Lee, S.D., De Raedt, L.: Constraint based mining of first order sequences in seqlog. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 154–173. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  24. 24.
    Manning, C.H., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  25. 25.
    Muggleton, S.H., De Raedt, L.: Inductive Logic Programming: Theory and Methods. Journal of Logic Programming 19(20), 629–679 (1994)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Bio. 48(3), 443–453 (1970)CrossRefGoogle Scholar
  27. 27.
    Nienhuys-Cheng, S.-H.: Distance between Herbrand interpretations: A measure for approximations to a target concept. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS, vol. 1297, pp. 250–260. Springer, Heidelberg (1997)Google Scholar
  28. 28.
    Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  29. 29.
    Ramon, J.: Clustering and instance based learning in first order logic. PhD thesis, Department of Computer Science, K.U. Leuven, Leuven, Belgium (October 2002)Google Scholar
  30. 30.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Evol. Biol. 4(4), 406–425 (1987)Google Scholar
  31. 31.
    Semeraro, G., Esposito, F., Malerba, D.: Ideal Refinement of Datalog Programs. In: Proceedings of the 5th Intternational Workshop on Logic Programming Synthesis and Transformation (1995)Google Scholar
  32. 32.
    Slaney, J., Thiébaux, S.: Blocks World revisited. Artificial Intelligence Journal 125, 119–153 (2001)zbMATHCrossRefGoogle Scholar
  33. 33.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)CrossRefGoogle Scholar
  34. 34.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  35. 35.
    Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with function approximation. IEEE Transactions of Automatic Control 42, 674–690 (1997)zbMATHCrossRefGoogle Scholar
  36. 36.
    Turcotte, M., Muggleton, S.H., Sternberg, M.J.E.: The Effect of Relational Background Knowledge on Learning of Protein Three-Dimensional Fold Signatures. Machine Learning Journal 43(1/2), 81–95 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kristian Kersting
    • 1
  • Luc De Raedt
    • 2
  • Bernd Gutmann
    • 2
  • Andreas Karwath
    • 3
  • Niels Landwehr
    • 3
  1. 1.CSAILMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departement ComputerwetenschappenK.U. LeuvenHeverleeBelgium
  3. 3.Machine Learning Lab, Institute for Computer ScienceUniversity of Freiburg, Georges-Koehler AlleeFreiburgGermany

Personalised recommendations