Advertisement

Validation Metrics for Non-rigid Registration of Medical Images Containing Vessel Trees

  • Thomas Lange
  • Hans Lamecker
  • Michael Hünerbein
  • Sebastian Eulenstein
  • Siegfried Beller
  • Peter M. Schlag
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Validation of non-rigid registration methods is still a challenging task. Different evaluation criteria were published, yet no widely accepted gold standard exists. The aim of this paper is to provide quantitative evaluation metrics suited for clinical 3D images containing vessel trees, such as liver or brain data. We present a method to identify corresponding points on different vessel trees by extracting consistent graph minors interactively. Four different metrics based on these correspondencies are proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    West J, Fitzpatrick JM, Wang MY, et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr. 1997;21(4):554–66.CrossRefGoogle Scholar
  2. 2.
    Hellier P, Barillot C, Corouge I, et al. Retrospective evaluation of inter-subject brain registration. Proc MICCAI. 2001; p. 258–65.Google Scholar
  3. 3.
    Christensen G, Geng X, Kuhl J, et al. Introduction to the non-rigid image registration evaluation project (NIREP). Proc WBIR. 2006; p. 128–35.Google Scholar
  4. 4.
    Reinertsen I, Descoteaux M, Siddiqi K, et al. Validation of vessel-based registration for correction of brain shift. Med Image Anal. 2007;11(4):374–88.CrossRefGoogle Scholar
  5. 5.
    Reinertsen I, Lindseth F, Unsgaard G, et al. Clinical validation of vessel-based registration for correction of brain-shift. Med Image Anal. 2007;11(6):673–84.CrossRefGoogle Scholar
  6. 6.
    Charnoz A, Agnus V, Malandain G, et al. Design of robust vascular tree matching: Validation on liver. Proc IPMI. 2005; p. 443–55.Google Scholar
  7. 7.
    Rohr K, Stiehl H, Sprengel R, et al. Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines. IEEE Trans Med Imaging. 2001;20(6):526–34.CrossRefGoogle Scholar
  8. 8.
    Lange T, Eulenstein S, Hünerbein M, et al. Augmenting intraoperative 3D ultrasound with preoperative models for navigation in liver surgery. Lect Notes Comp Sci. 2004;3217:534–41.Google Scholar
  9. 9.
    Lange T, Lamecker H, Hünerbein M, et al. A new class of distance measures for registration of tubular models to image data. Proc BVM. 2007; p. 101–5.Google Scholar
  10. 10.
    Beller S, Hünerbein M, Eulenstein S, et al. Feasibility of navigated resection of liver tumors using multiplanar visualization of intraoperative 3D ultrasound data. Annal Surg. 2007;246(2):288–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Lange
    • 1
  • Hans Lamecker
    • 2
  • Michael Hünerbein
    • 1
  • Sebastian Eulenstein
    • 1
  • Siegfried Beller
    • 1
  • Peter M. Schlag
    • 1
  1. 1.Department of Surgery and Surgical OncologyCharité - Universitätsmedizin BerlinBerlin
  2. 2.Zuse Institute BerlinBerlin

Personalised recommendations