An Intelligent Platform to Provide Home Care Services

  • David Isern
  • Antonio Moreno
  • Gianfranco Pedone
  • Laszlo Varga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4924)


The progressive increase in the percentage of old people in all European countries implies an enormous economic and social cost, which can be somehow reduced if Home Care services are improved. The K4Care European project is studying the feasibility of using Information and Communication Technologies to improve the management of Home Care. This paper details the project objectives, the K4Care Home Care model, and the declarative and procedural knowledge needed in Home Care. It also describes the architecture of the agent-based web-accessible K4Care platform, and how the intelligent agents coordinate their actions to provide the basic Home Care services defined in the model.


Home Care ICT intelligent agents ontologies clinical guidelines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wyatt, J.C., Sullivan, F.: eHealth and the future: Promise or Peril? BMJ 331, 1391–1393 (2007)CrossRefGoogle Scholar
  2. 2.
    Michie, S., Johnston, M.: Changing clinical behaviour by making guidelines specific. BMJ 328, 343–345 (2004)CrossRefGoogle Scholar
  3. 3.
    Campana, F., Annicchiarico, R., Riaño, D.: Knowledge-based homecare eservices for an ageing europe: D01 - the k4care model. Technical report, K4Care Consortium, Available online [Last visit: 2007/11/20] (2006), at
  4. 4.
    NGC: National guideline clearinghouse (2007), Website: [last visit 2007/11/19],
  5. 5.
    Leung, G.M., Johnston, J.M., Tin, K.Y.K., Wong, I.O.L., Ho, L.M., Lam, W.W.T., Lam, T.H.: Randomised controlled trial of clinical decision support tools to improve learning of evidence based medicine in medical students. BMJ 327, 1090–1095 (2003)CrossRefGoogle Scholar
  6. 6.
    Fensel, D.: Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce, 1st edn. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  7. 7.
    Isern, D., Sánchez, D., Moreno, A.: An ontology-driven agent-based clinical guideline execution engine. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 49–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Batet, M., Gibert, K., Valls, A.: The Data Abstraction Layer as Knowledge Provider for a Medical Multi-Agent System. In: Riaño, D., Campana, F. (eds.) Workshop From Knowledge to Global Care at AIME 2007, pp. 1–9 (2007)Google Scholar
  9. 9.
    Kamisalic, A., Riaño, D., Real, F., Welzer, T.: Temporal Constraints Approximation from Data about Medical Procedures. In: Twentieth IEEE International Symposium on Computer-Based Medical Systems, CBMS 2007, Maribor, Slovenia, pp. 581–588. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  10. 10.
    Riaño, D.: The SDA Model v1.0: A Set Theory Approach. Technical Report DEIM-RT-07-001, University Rovira i Virgili. Department of Computer Science and Mathematics [last visit: 2007/11/19] (2007), Available at
  11. 11.
    Boxwala, A.A., Tu, S., Peleg, M., Zeng, Q., Ogunyemi, O., Greenes, R.A., Shortliffe, E.H., Patel, V.L.: Toward a Representation Format for Sharable Clinical Guidelines. Journal of Biomedical Informatics 34, 157–169 (2001)CrossRefGoogle Scholar
  12. 12.
    Isern, D., Moreno, A.: Computer-Based Management of Clinical Guidelines: A Survey. In: 4th Workshop on Agents Applied in Health Care in conjunction with the 17th European Conference on Artificial Intelligence, ECAI 2006, Riva del Garda, Italy, pp. 71–80 (2006)Google Scholar
  13. 13.
    Bodenreider, O.: The Unified Medical Language System (UMLS): Integrating Biomedical Terminology. Nucleic Acids Research 32, D267–D270 (2004)CrossRefGoogle Scholar
  14. 14.
    Kumar, A., Ciccarese, P., Smith, B., Piazza, M.: Context-Based Task Ontologies for Clinical Guidelines. In: Ontologies in Medicine. Studies in Health Technology and Informatics, vol. 102, pp. 81–94. IOS Press, Amsterdam (2004)Google Scholar
  15. 15.
    Sánchez, D., Moreno, A.: A methodology for knowledge acquisition from the web. International Journal of Knowledge-Based and Intelligent Engineering Systems 10, 453–475 (2006)Google Scholar
  16. 16.
    Serban, R., Teije, A.t., Harmelen, F.v., Marcos, M., Polo-Conde, C.: Extraction and use of linguistic patterns for modelling medical guidelines. Artificial Intelligence in Medicine 39, 137–149 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Isern
    • 1
  • Antonio Moreno
    • 1
  • Gianfranco Pedone
    • 2
  • Laszlo Varga
    • 2
  1. 1.Department of Computer Science and Mathematics Intelligent Technologies for Advanced Knowledge Acquisition Research GroupUniversity Rovira i VirgiliTarragona(Spain)
  2. 2.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations